Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
mikra.docx
Скачиваний:
0
Добавлен:
01.03.2025
Размер:
552.42 Кб
Скачать

27. Типичное маслянокислое брожение.

Маслянокислое брожение — брожение, в ходе которого образуется масляная кислота C3H7COOH. При этом водород и углекислота являются побочными продуктами. Маслянокислое брожение — результат деятельности анаэробных бактерий, в том числе рода Клостридиум. Как следует из названия, такое брожение связано с прогорканием жиров.

Важная сфера возникновения такого брожения — разложение мертвых тел живых организмов. Масляная кислота обладает специфическим запахом, привлекающим детритофагов.

Маслянокислое брожение может быть 3 форм: Собственно маслянокислое брожение, пектиновое брожение и ацетонбутиловое брожение.

Пектиновое брожение – разложение пектиновых веществ микроорганизмами в анаэробных условиях с образованием газов и органических кислот. Пектиновые бактерии с помощью фермента пектиназы разрушают пектин с образованием пектиновой кислоты, превращающейся далее в галактуроновую кислоту. Образующиеся одновременно углеводы (арабиноза, галактоза и др.) сбраживаются пектиноразлагающими бактериями с образованием уксусной, муравьиной, масляной кислот, водорода и углекислоты. Пектиновые бактерии играют существенную роль в разложении растительных остатков в п. и в мацерации растительного материала при мочке прядильных волокон.

Ацетонбутиловое брожение – тип брожения, осуществляемый некоторыми клостридиями. Отличается от маслянокислого брожения субстратом и конечными продуктами. В качестве субстрата используется глюкоза, глицерин, пируват, причем глюкоза расщепляется по гликолитическому пути.Процесс имеет двухфазный характер. Вначале при сбраживании глюкозы выделяются масляная и уксусная кислоты, по мере подкисления среды начинается синтез ацетона и бутанола, что и обусловило название данного типа брожения. Также образуется некоторое количествоэтанола, СОо и Б. а. используется для пром. получения органических растворителей ацетона и бутанола.

28. Аэробное дыхание. Прямое полное окисление органического субстрата.

29. Аэробное дыхание. Прямое неполное окислениеорганического субстрата.

30. Аэробное дыхание. Прямое полное окисление неорганического субстрата.

31. Вторично-анаэробное дыхание прокариот. Нитратное и сульфатное дыхание.

Анаэробное дыхание — биохимический процесс окисления органических субстратов или молекулярного водорода с использованием в дыхательной электротранспортной цепи в качестве конечного акцептора электронов вместо O2 других окислителей неорганической или органической природы. Как и в случае аэробного дыхания, выделяющаяся в ходе реакции свободная энергия запасается в виде трансмембранного протонного потенциала, использующегося АТФ-синтазой для синтеза АТФ.

Осуществляется прокариотами (в редких случаях — и эукариотами) в анаэробных условиях. При этом факультативные анаэробы используют акцепторы электронов с высоким окислительно-восстановительным потенциалом (NO3, NO2, Fe3+, фумарат, диметилсульфоксид и т. д.), у них это дыхание конкурирует с энергетически более выгодным аэробным и подавляется кислородом. Акцепторы с низким окислительно-восстановительным потенциалом (сера, SO42−, CO2) применяются только строгими анаэробами, гибнущими при появлении в среде кислорода. В корневых системах многих растений при гипоксии и аноксии, вызванных затоплением посевов в результате длительных дождей или весенних паводков, развивается анаэробное дыхание с использованием в качестве акцепторов электронов альтернативных кислороду соединений, например нитратов. Установлено, что растения, произрастающие на полях, удобренных нитратными соединениями, переносят переувлажнение почвы и сопутствующую ему гипоксию лучше, нежели такие же растения без нитратной подкормки.

Механизмы окисления органических субстратов при анаэробном дыхании, как правило, аналогичны механизмам окисления при аэробном дыхании. Исключением является использование в качестве исходного субстрата ароматических соединений. Обычные пути их катаболизма требуют молекулярного кислорода уже на первых стадиях, в анаэробных условиях осуществляются иные процессы, например, восстановительная деароматизация бензоил-КоА у Thauera aromatica с затратой энергии АТФ. Некоторые субстраты (например,лигнин) при анаэробном дыхании не могут использоваться.

Нитратное дыхание: Прокариоты обладают возможностью использовать в качестве акцептора электрона в дыхательной электронтранспортной цепи (ЭТЦ) вместо кислорода различные окисленные соединения азота. Ферментом, катализирующим финальную стадию транспорта электрона — его перенос на нитрат-анион — является нитратредуктаза. При использовании нитритов ферментов и путей его восстановления два:

  • NO-образующая нитритредуктаза восстанавливает нитрит до оксида азота (II). Это одна из стадий денитрификации.

  • NH3-образующая нитритредуктаза восстанавливает нитрит до иона аммония, что является заключительной стадией диссимиляционного восстановления нитратов в аммоний или, как его называют в иностранной литературе, диссимиляционной или дыхательной аммонификации (в отечественной литературой аммонификацией называется процесс высвобождения аммиака из состава органических соединений, например, белков). Надо отметить, что ассимиляционное восстановление нитратов в аммоний (ассимиляционная нитратредукция или просто ассимиляция) — процесс включения нитратов после восстановления до аммония в состав органических веществ, широко распространённый у прокариот и некоторых групп эукариот (грибы, растения) — не сопряжён с получением энергии.

НАД·H, образовавшийся при гликолизе, в ЦТК или по иным механизмам и поступающий в дыхательную ЭТЦ, окисляется обычно НАД·H:убихинон-оксидоредуктазой, являющейся протонной помпой. Терминальные оксидоредуктазы, переносящие электрон на конечный акцептор, в отличие от цитохромоксидазы аэробной ЭТЦ, обычно не являются протонной помпой. Однако при переносе нитратредуктазой электрона с убихинона (или у ряда видов менахинона) на нитрат-анион происходит выделение двух протонов в периплазму (с убихинона) и связываение двух протонов в воду в цитоплазме. Таким образом создаётся дополнительный протонный градиент.

Аналогичным образом, связывая протоны в цитоплазме, создаёт градиент электрохимического потенциала нитритредуктаза. В то же время NO-редуктаза связывает протоны из периплазмы и её работа не сопряжена с образованием градиента потенциала.

Больше путей переноса протонов через мембрану анаэробная ЭТЦ не содержит (в аэробной же их 3), в связи с чем нитратное дыхание по эффективности в расчёте на 1 моль глюкозы составляет лишь 70 % от аэробного. При поступлении в среду молекулярного кислорода бактерии переключаются на обычное дыхание.

Нитратное дыхание встречается, хотя и редко, и среди эукариот. Так, нитратное дыхание, сопровождающееся денитрификацией и выделением молекулярного азота, недавно открыто у фораминифер. До этого нитратное дыхание с образованием N2O было описано у грибов Fusariumи Cylindrocarpon.

Сульфатное дыхание: В настоящее время известен ряд бактерий, способных окислять органические соединения или молекулярный водород в анаэробных условиях, используя в качестве акцепторов электронов в дыхательной цепи сульфаты, тиосульфаты, сульфиты, молекулярную серу. Этот процесс получил название диссимиляционной сульфатредукции, а бактерии, осуществляющие этот процесс — сульфатвосстанавливающих или сульфатредуцирующих.

Все сульфатвосстанавливающие бактерии — облигатные анаэробы.

Сульфатвосстанавливающие бактерии получают энергию в процессе сульфатного дыхания при переносе электронов в электронтранспортной цепи. Перенос электронов от окисляемого субстрата по электронтранспортной цепи сопровождается возникновением электрохимического градиента ионов водорода с последующим синтезом АТФ.

Подавляющее большинство бактерий этой группы хемоорганогетеротрофы. Источником углерода и донором электронов для них являются простые органические вещества — пируват,лактат, сукцинат, малат, а также некоторые спирты. У некоторых сульфатвосстанавливающих бактерий обнаружена способность к хемолитоавтотрофии, когда окисляемым субстратом является молекулярный водород.

Сульфатвосстанавливающие эубактерии широко распространены в анаэробных зонах водоёмов разного типа, в иле, в почвах, в пищеварительном тракте животных. Наиболее интенсивно восстановление сульфатов происходит в соленых озерах и морских лиманах, где почти нет циркуляции воды, и содержится много сульфатов. Сульфатвосстанавливающим эубактериям принадлежит ведущая роль в образовании сероводорода в природе и в отложении сульфидных минералов. Накопление в среде H2S часто приводит к отрицательным последствиям — в водоемах к гибели рыбы, в почвах к угнетению растений. С активностью сульфатвосстанавливающих эубактерий связана также коррозия в анаэробных условиях различного металлического оборудования, например, металлических труб.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]