
- •1.Множества и элементарные операции над ними. Понятие функции одной действительной переменной. График функции. Область определения.
- •2.Числовая последовательность и её предел.
- •3. Определение предела функции в точке.
- •4. Определение предела функции при
- •5.Основные определения о пределах.
- •6. Первый замечательный предел.
- •7. Второй замечательный предел.
- •8. Бесконечно малые функции. Сравнение бесконечно малых функций.
- •9. Таблица эквивалентных бесконечно малых функций.
- •10.Бесконечно большие функции. Сравнение бесконечно больших функций. Связь между бесконечно малыми и бесконечно большими функциями.
- •11. Непрерывность функции в точке и области, нарушения непрерывности, точки разрыва и их классификация.
- •12. Производная функции, ее механический и геометрический смысл.
- •13.Правила дифференцирования.
- •19.Дифференциал функции. Инвариантность формулы первого дуфференциала.
- •20.Производные и дифференциалы высших порядков.
- •21.Уравнения касательной и нормали кривой.
- •22.Тоерема Ролля.
- •23.Теорема Лагранжа.
- •24.Теорема Коши.
- •25.Правило Лопиталя.
- •26.Необходимое условие экстремума функции одной переменной.
- •27.Достаточные условия экстремума функции одной переменной.
- •28.Выпуклость, вогнутость, точки перегиба функции.
- •29.Асимптоты графика функции.
- •30.Общая схема исследования функции и построения графика.
- •31. Формула Тейлора для многочлена. Формула Тейлора для произвольной функции. Формула Маклорена.
- •38. Полный дифференциал функции двух переменных и его применение к приближённым вычислениям.
28.Выпуклость, вогнутость, точки перегиба функции.
График функции y=f(x) называется выпуклым на интервале (a; b), если он расположен ниже любой своей касательной на этом интервале.
График функции y=f(x) называется вогнутым на интервале (a; b), если он расположен выше любой своей касательной на этом интервале.
Точка, при переходе через которую функция меняет выпуклость на вогнутость или наоборот, называется точкой перегиба. Отсюда следует, что если в точке перегиба x0 существует вторая производная f '' ( x0 ), то f '' ( x0 ) = 0.
29.Асимптоты графика функции.
Определение. Если расстояние от точки M кривой y = f(x) от некоторой прямой y = kx + b стремиться к нулю, когда точка M, двигаясь по кривой, удаляется в бесконечность, то прямая y = kx + b называется асимптотой кривой y = f(x). Асимптоты могут быть вертикальными, наклонными и горизонтальными.
30.Общая схема исследования функции и построения графика.
1) найти область определения функции, промежутки непрерывности и точки разрыва;
2) найти асимптоты графика функции;
3) проверить симметрию графика, периодичность;
4) найти интервалы монотонности, экстремумы;
5) найти интервалы выпуклости, вогнутости, точки перегиба;
6) найти точки пересечения с осями координат;
7) провести в случае необходимости исследование на концах области определения;
8) построить график функции.
31. Формула Тейлора для многочлена. Формула Тейлора для произвольной функции. Формула Маклорена.
Если функция имеет в некоторой окрестности точки непрерывные частные производные до (n+1)-го порядка включительно, то для любой точки из этой окрестности справедлива формула Тейлора n-го порядка: , где ,
,
и т.д. Формула Тейлора, записанная в окрестности точки (0,0) называется формулой Маклорена. Например, для функции двух
переменных при n=2: .
ПРИМЕР 1. Разложение функции по формуле Тейлора в окрестности произвольной точки.
Аппроксимация функции многочленом. Выражение называется многочленом Тейлора n-го порядка. Поскольку , то в окрестности точки функцию можно приближенно заменить, или, как говорят, аппроксимировать, ее многочленом Тейлора, т.е. . Чем ближе точка к точке , тем выше точность такой аппроксимации; кроме того, точность возрастает с ростом n. Это означает, что, чем больше непрерывных производных имеет функция , тем точнее представляет ее многочлен Тейлора.
32. Формула Маклорена для ех
33. Формула Маклорена для sinx
34. Формула Маклорена для cosx
35. Формула Маклорена для ln(1+x)
36. Формула Маклорена для (1+x)m где
37. Понятие функции нескольких переменных. Область определения. Частные производные первого порядка и их геометрический смысл.
Величина z называется функцией переменных величин x и y на множестве D, если каждой точке этого множества соответствует одно определенное значение величины z.
Множество точек D называется областью определения функции. Обычно областью определения функции является некоторая часть плоскости, ограниченная одной или несколькими линиями.
Частными производными функции z = f(x,у) называются пределы отношения приращений функции z = z(х,у) к приращению соответствующего аргумента по направлениям ох или оу при Δх → 0 и Δу → 0 соответственно:
Частная производная по х:
при вычислении считают у = const.
Частная производная по у:
при вычислении считают x = const.
Геометрически
, где α – угол касательной к поверхности в точке с направлением оси ох;
, где β – угол касательной к поверхности в точке с направлением оси оу.