
- •1.Множества и элементарные операции над ними. Понятие функции одной действительной переменной. График функции. Область определения.
- •2.Числовая последовательность и её предел.
- •3. Определение предела функции в точке.
- •4. Определение предела функции при
- •5.Основные определения о пределах.
- •6. Первый замечательный предел.
- •7. Второй замечательный предел.
- •8. Бесконечно малые функции. Сравнение бесконечно малых функций.
- •9. Таблица эквивалентных бесконечно малых функций.
- •10.Бесконечно большие функции. Сравнение бесконечно больших функций. Связь между бесконечно малыми и бесконечно большими функциями.
- •11. Непрерывность функции в точке и области, нарушения непрерывности, точки разрыва и их классификация.
- •12. Производная функции, ее механический и геометрический смысл.
- •13.Правила дифференцирования.
- •19.Дифференциал функции. Инвариантность формулы первого дуфференциала.
- •20.Производные и дифференциалы высших порядков.
- •21.Уравнения касательной и нормали кривой.
- •22.Тоерема Ролля.
- •23.Теорема Лагранжа.
- •24.Теорема Коши.
- •25.Правило Лопиталя.
- •26.Необходимое условие экстремума функции одной переменной.
- •27.Достаточные условия экстремума функции одной переменной.
- •28.Выпуклость, вогнутость, точки перегиба функции.
- •29.Асимптоты графика функции.
- •30.Общая схема исследования функции и построения графика.
- •31. Формула Тейлора для многочлена. Формула Тейлора для произвольной функции. Формула Маклорена.
- •38. Полный дифференциал функции двух переменных и его применение к приближённым вычислениям.
22.Тоерема Ролля.
Пусть функция f (x) непрерывна на [a, b], дифференцируема на (a, b) и на концах отрезка принимает равные значения f(a) = f(b). Тогда существует точка c(a,b),в которой f '(c)=0. Доказательство. Так как функция f(x) непрерывна на [a, b],то по свойству непрерывных функций она достигает на этом отрезке максимальное значение М и минимальное значение m. Возможны два случая: максимум и минимум достигаются на концах отрезка или что – либо (или максимум, или минимум) попадает вовнутрь интервала. В первом случае f (x) = const = M = m. Поэтому производная равна нулю f ' (c) = 0 в любой точке отрезка [a, b], и теорема доказана. Во втором случае, так как f (x) дифференцируема в точке c, из теоремы Ферма следует, что f ' (c) = 0.
Геометрический смысл теоремы Ролля. Геометрически теорема Ролля означает, что у графика непрерывной на отрезке [a, b] и дифференцируемой внутри этого отрезка функции, принимающей на его концах f(a) = f(b) равные значения, существует точка (c; f(c)), в которой касательная параллельна оси Оx.
23.Теорема Лагранжа.
Если функция f(x) непрерывна на замкнутом отрезке [a, b], дифференцируема внутри него, то существует такая точка с (a, b), что выполняется равенство f(b) − f(a) = f '(c)·(b − a).
Д о к а з а т е л ь с т в о. Составим уравнение хорды, проходящей через точки (a, f(a)), (b, f(b))
y = f(a) + Q·(x - a), где есть угловой коэффициент хорды. Рассмотрим разность ординат функции и хорды F(x) = f(x) − f(a) − Q·(x − a).
Очевидно, что функция F(x) удовлетворяет всем условиям теоремы Ролля. Поэтому на интервале (a, b) найдётся такая точка с, для которой F ' (c) = 0. То есть F ' (c) = f ' (c) − Q = 0. Откуда следуе. И, наконец, f(b) − f(a) = f '(c)·(b − a). Геометрический смысл теоремы Лагранжа. Величина является угловым коэффициентом секущей, проходящей через точки M1 (a; f(a)) и M2(b; f (b)) графика функции у = f(x), a f ' (c) — угловой коэффициент касательной к графику в точке (c; f (c)). Из теоремы Лагранжа следует, что существует точка "c" такая, что касательная к графику в точке (c; f(c)) параллельна секущей M1M2. Таких точек может быть и несколько, но, по крайней мере, одна всегда существует. Замечание. Формула Лагранжа по структуре похожа на формулу линеаризации
f (x) − f (x0) ≈ f '(x0)·(x −x0). Отличие только лишь в выборе точки для подсчета значения производной и в знаке равенства.
24.Теорема Коши.
Пусть функции f (x) и g(x) непрерывны на [a, b] и дифференцируемы на (a, b). Пусть, кроме того, во всех точках интервала (a, b) функция g(x) имеет ненулевую производную g ' (x) ≠ 0. Тогда существует точка c (a, b), такая, что справедлива формула
Д о к а з а т е л ь с т в о. Покажем сначала, что знаменатель левой части формулы не обращается в ноль. Если допустить, что g(b) = g(a), то по теореме Ролля для функции g(x) найдется точка (a, b), в которой g ' () = 0. А это противоречит условию, что g ' (x) ≠ 0 на (a, b). Рассмотрим функцию . Функция F(x) на [a, b] удовлетворяет условиям теоремы Ролля: F(x) непрерывна на [a, b], дифференцируема на (a, b), и, кроме того, на концах интервала принимает равные значения F(a) = F(b) = 0. По теореме Ролля для F(x) существует точка c (a, b) , такая ,что F ' (c) = 0.Так как , то . Откуда, учитывая, что g '(c) ≠ 0, следует искомое соотношение.