
- •1.Молекулярно-кинетический и термодинамический способы описания состояния микроскопической системы. Термодинамические параметры системы. Идеальный газ. Законы идеального газа.
- •2.Основное уравнение молекулярно-кинетической теории идеального газа. Уравнение состоянии идеального газа. Изопроцессы.
- •3. Внутренняя энергия идеального газа. Закон равномерного распределения энергии по степеням свободы.
- •4. Первое начало термодинамики. Применение первого начала термодинамики к изопроцессам. Теплоемкость. Уравнение Майера.
- •6. Круговой процесс и его кпд. Обратимые и необратимые процессы. Цикл Карно. Первая и вторая теоремы Карно.
- •7. Энтропия. Второе и третье начала термодинамики. Изменение энтропии в процессах идеального газа.
- •8. Термодинамические потенциалы. Химический потенциал системы, энтальпия, свободная энергия Гельмгольца, потенциал Гиббса.
- •10. Барометрическая формула. Распределение Больцмана.
- •11. Явление переноса(закон Фика, закон Фурье, закон Ньютона). Средняя длина свободного пробега молекулы.
- •12. Реальные газы. Уравнение Ван-Дер-Ваальса.
- •13. Внутренняя энергия реального газа. Эффект Джоуля-Томсона.
- •14. Фазы вещества. Фазовое равновесие и фазовые переходы 1го и 2го рода. Фазовые диаграммы состояния вещества. Тройная точка.
- •15. Явления на границе жидкости и твердого тела. Капиллярные явления.
- •16. Кристаллические и аморфные твердые тела. Строение и симметрия кристаллов. Дефекты кристаллических решеток. Пластическая деформация, текучесть и предел прочности.
- •17. Классическая теория теплоемкости твердых тел. Закон Дюлонга и Пти.
- •19. Электрический заряд. Свойства электрического заряда. Взаимодействие электрических зарядов. Электрическое поле. Закон Кулона.
- •20. Напряженность электрического поля. Силовые линии. Принцип суперпозиции. Напряженность поля точечного заряда и системы точечных зарядов.
- •30. Типы диэлектриков. Поляризация диэлектриков. Поляризационные заряды. Вектор поляризации. Напряжённость электрического поля в диэлектрике. Диэлектрическая восприимчивость.
- •31. Поляризация полярных и неполярных диэлектриков. Поляризуемость молекулы. Диэлектрическая восприимчивость полярных и неполярных диэлектриков. Ионная поляризация.
- •40. Сопротивление проводников. Закон Ома для однородного и неоднородного участков цепи, для замкнутой цепи. Правила Кирхгофа.
- •41. Работа и мощность тока. Закон Джоуля-Ленца в интегральной и дифференциальной формах.
- •42. Основы классической электронной теории электропроводности металлов. Удельная электропроводность. Подвижность носителей тока.
- •43. Закон Джоуля-Ленца, закон Виемана-Франца, закон Ома на основе классической теории электропроводимости.
15. Явления на границе жидкости и твердого тела. Капиллярные явления.
На границе раздела двух сред поверхностная энергия вещества зависит не только от свойств данного вещества, но и от свойств того вещества, с которым она имеет общую границу. На границе раздела двух веществ следует рассматривать суммарную поверхностную энергию двух веществ с общей границей.
Если граничат сразу три вещества - твердое тело, жидкость и газ - то вся система приобретает конфигурации, которая соответствует минимуму суммарной поверхностной энергии. Контур, по которому разграничиваются все три вещества, располагается на поверхности твердого тела так, что сумма проекций всех приложенных к каждому элементу контура сил поверхностного натяжения на направление, вдоль которого элемент контура может перемещаться (по касательной к поверхности твердого тела) равна нулю.
Капиллярные явления - физические явления, обусловленные действием поверхностного натяжения на границе раздела несмешивающихся сред. К капиллярным явлениям относят обычно явления в жидких средах, вызванные искривлением их поверхности, граничащей с др. жидкостью, газом или собственным паром. Искривление поверхности ведёт к появлению в жидкости дополнительного капиллярного давления Dp, величина которого связана со средней кривизной r поверхности уравнением Лапласа: Dp = p1 — p2 = 2s12/r, где (s12 — поверхностное натяжение на границе двух сред; p1 и p2 — давления в жидкости 1 и контактирующей с ней среде (фазе).
Капиллярные явления охватывают различные случаи равновесия и движения поверхности жидкости под действием межмолекулярных сил и внешних сил (в первую очередь силы тяжести).
16. Кристаллические и аморфные твердые тела. Строение и симметрия кристаллов. Дефекты кристаллических решеток. Пластическая деформация, текучесть и предел прочности.
Твердое тело — агрегатное состояние вещества, характеризующееся постоянством формы и характером движения атомов, которые совершают малые колебания около положений равновесия.
Кристаллические тела: Твердое тело в обычных условиях трудно сжать или растянуть. Для придания твердым телам нужной формы или объема на заводах и фабриках их обрабатывают на специальных станках: токарных, строгальных, шлифовальных.
В отсутствие внешних воздействий твердое тело сохраняет свою форму и объем.
Это объясняется тем, что притяжение между атомами (или молекулами) у них больше, чем у жидкостей (и тем более газов). Оно достаточно, чтобы удержать атомы около положений равновесия.
Аморфные тела — это твердые тела, для которых характерно неупорядоченное расположение частиц в пространстве. В этих телах молекулы (или атомы) колеблются около хаотически расположенных точек и, подобно молекулам жидкости, имеют определенное время оседлой жизни. Но, в отличие от жидкостей, время это у них очень велико. К аморфным телам относятся стекло, янтарь, различные другие смолы, пластмассы. Хотя при комнатной температуре эти тела сохраняют свою форму, но при повышении температуры они постепенно размягчаются и начинают течь, как жидкости: у аморфных тел нет определенной температуры, плавления.
Этим они отличаются от кристаллических тел, которые при повышении температуры переходят в жидкое состояние не постепенно, а скачком (при вполне определенной температуре — температуре плавления)
Симметрия кристаллов - свойство кристаллов совмещаться с собой при поворотах, отражениях, параллельных переносах либо при части или комбинации этих операций. Симметрия внеш. формы кристалла определяется симметрией его атомного строения, края обусловливает также и симметрию физ. свойств кристалла.
Строение кристалла - упорядоченное расположение атомов, соединенных ХИМИЧЕСКИМИ СВЯЗЯМИ, многократное повторяемое. За счет этой упорядоченности, иногда асимметричной, физические свойства кристалла, такие как проводимость и прочность, закономерным образом изменяются в зависимости от того, по какой оси их измеряют. В этом отношении одиночные кристаллы (монокристаллы) отличаются от некристаллических (аморфных) и поликристаллических веществ, у которых физические свойства остаются неизменными (из-за полного смешения) либо меняются нерегулярным образом.
Дефект кристаллической решетки - отклонение кристаллической решетки от ее идеального периодического строения. Различают: точечные дефекты, линейные дефекты и объемные дефекты: трещины, поры, раковины и т.д.
Пластическая деформация – это смещение одних слоев металла относительно других по линиям скольжения, образующимся по дислокациям. При любой пластической деформации происходит изменение геометрии зерна, детали, образца.
Текучесть — свойство пластичных металлов и тел при постепенном увеличении давления уступать действию сдвигающих сил и течь подобно вязким жидкостям. Текучесть является свойством, обратным вязкости.
Предел текучести - механическая х-ка материала, характеризующую напряжение, при котором деформации продолжают расти без увеличения нагрузки.