
- •1.Молекулярно-кинетический и термодинамический способы описания состояния микроскопической системы. Термодинамические параметры системы. Идеальный газ. Законы идеального газа.
- •2.Основное уравнение молекулярно-кинетической теории идеального газа. Уравнение состоянии идеального газа. Изопроцессы.
- •3. Внутренняя энергия идеального газа. Закон равномерного распределения энергии по степеням свободы.
- •4. Первое начало термодинамики. Применение первого начала термодинамики к изопроцессам. Теплоемкость. Уравнение Майера.
- •6. Круговой процесс и его кпд. Обратимые и необратимые процессы. Цикл Карно. Первая и вторая теоремы Карно.
- •7. Энтропия. Второе и третье начала термодинамики. Изменение энтропии в процессах идеального газа.
- •8. Термодинамические потенциалы. Химический потенциал системы, энтальпия, свободная энергия Гельмгольца, потенциал Гиббса.
- •10. Барометрическая формула. Распределение Больцмана.
- •11. Явление переноса(закон Фика, закон Фурье, закон Ньютона). Средняя длина свободного пробега молекулы.
- •12. Реальные газы. Уравнение Ван-Дер-Ваальса.
- •13. Внутренняя энергия реального газа. Эффект Джоуля-Томсона.
- •14. Фазы вещества. Фазовое равновесие и фазовые переходы 1го и 2го рода. Фазовые диаграммы состояния вещества. Тройная точка.
- •15. Явления на границе жидкости и твердого тела. Капиллярные явления.
- •16. Кристаллические и аморфные твердые тела. Строение и симметрия кристаллов. Дефекты кристаллических решеток. Пластическая деформация, текучесть и предел прочности.
- •17. Классическая теория теплоемкости твердых тел. Закон Дюлонга и Пти.
- •19. Электрический заряд. Свойства электрического заряда. Взаимодействие электрических зарядов. Электрическое поле. Закон Кулона.
- •20. Напряженность электрического поля. Силовые линии. Принцип суперпозиции. Напряженность поля точечного заряда и системы точечных зарядов.
- •30. Типы диэлектриков. Поляризация диэлектриков. Поляризационные заряды. Вектор поляризации. Напряжённость электрического поля в диэлектрике. Диэлектрическая восприимчивость.
- •31. Поляризация полярных и неполярных диэлектриков. Поляризуемость молекулы. Диэлектрическая восприимчивость полярных и неполярных диэлектриков. Ионная поляризация.
- •40. Сопротивление проводников. Закон Ома для однородного и неоднородного участков цепи, для замкнутой цепи. Правила Кирхгофа.
- •41. Работа и мощность тока. Закон Джоуля-Ленца в интегральной и дифференциальной формах.
- •42. Основы классической электронной теории электропроводности металлов. Удельная электропроводность. Подвижность носителей тока.
- •43. Закон Джоуля-Ленца, закон Виемана-Франца, закон Ома на основе классической теории электропроводимости.
1.Молекулярно-кинетический и термодинамический способы описания состояния микроскопической системы. Термодинамические параметры системы. Идеальный газ. Законы идеального газа.
Термодинамической системой называется совокупность макроскопических тел, состоящих из огромного числа независимо движущихся молекул (материальных точек). Под телом может подразумеваться и жидкость, и газ, и кристалл, и плазма и т.д.
Следовательно, термодинамическая система --- это система с огромным числом степеней свободы. Описать ее можно с помощью микроскопических параметров, т.е. скоростей, координат, масс отдельных молекул. Тогда изменение состояния системы, т.е. процесс, протекающий в ней, будет суммарным результатом движения всех молекул. Такой способ описания называется молекулярно--кинетическим или статистическим. Он используется в статистической физике.
Но
можно описать термодинамическую систему,
не интересуясь движением отдельных
молекул, т.е. с
помощью макроскопических или термодинамических
параметров, характеризующих
состояние системы в целом.
Такими параметрами
являются:
объем V, давление p, температура T,
поляризованность
,
намагниченность
и
т.п. Этот способ описания
называется термодинамическим и
изучается в термодинамике.
Идеальный газ - газ, в котором отсутствуют силы межмолекулярного взаимодействия.
Законы: а) Закон Бойля - Мариотта: при неизменных температуре и массе произведение численных значений давления и объема газа постоянно: pV = const
б) Закон Гей-Люссака: при постоянном давлении объем данной массы газа прямо пропорционален его абсолютной температуре: V = Vо(1 + at), где V - объем газа при температуре t, °С; Vо – его объем при 0°С. Величина a называется температурным коэффициентом объемного расширения. Для всех газов a = (1/273°С–1).
в) Закон Шарля: при постоянном объеме давление данной массы газа прямо пропорционально его абсолютной температуре: p = pо(1+gt), где ро - давление газа при температуре t = 273,15 К. Величина g называется температурным коэффициентом давления.
г) Закон Авогадро: при одинаковых давлениях и одинаковых температурах и равных объемах различных идеальных газов содержится одинаковое число молекул.
2.Основное уравнение молекулярно-кинетической теории идеального газа. Уравнение состоянии идеального газа. Изопроцессы.
Основное уравнение молекулярно-кинетической теории идеального газа:
где k является постоянной
Больцмана (отношение универсальной
газовой постоянной R к числу
Авогадро NA), i —
число степеней свободы молекул (
в
большинстве задач про идеальные газы,
где молекулы предполагаются сферами
малого радиуса, физическим аналогом
которых могут служить инертные газы),
а T -
абсолютная температура.
Уравнение состояния идеального газа имеет вид: pVm = RT, где р, Vm и Т - давление, молярный объем и абсолютная температура газа, а R - универсальная газовая постоянная, численно равная работе, совершаемой 1 молем идеального газа при изобарном нагревании на один градус: R = 8.31*103 Дж/(кмоль*град) Это уравнение называется уравнением Менделеева-Клапейрона.
Изопроцессы — термодинамические процессы, во время которых количество вещества и ещё одна из физических величин — параметров состояния: давление, объём или температура — остаются неизменными. Так, неизменному давлению соответствует изобарный процесс, объёму — изохорный, температуре — изотермический, энтропии — изоэнтропийный.
Изобарный процесс: При постоянном давлении и неизменных значениях массы газа и его молярной массы, отношение объёма газа к его абсолютной температуре остаётся постоянным: V/T = const.
Изохорный процесс: Для идеальных газов изохорический процесс описывается законом Шарля: для данной массы газа при постоянном объёме, давление прямо пропорционально температуре
Изотермический процесс: описывается законом Бойля — Мариотта: При постоянной температуре и неизменных значениях массы газа и его молярной массы, произведение объёма газа на его давление остается постоянным: PV = const.
Изоэнтропийный процесс: в таком процессе не происходит теплообмена с окружающей средой.