
- •Методические указания и задания
- •Донецк – 2005
- •Системы счисления
- •Теоретическая справка Правила перевода из одной с.С. В другую:
- •Задание на лабораторную работу
- •Операции над множествами
- •Основные законы алгебры множеств:
- •Задание к лабораторной работе.
- •Контрольные вопросы.
- •Отношения на множествах
- •Теоретическая справка
- •Способы задания отношений
- •Свойства бинарных отношений
- •Функциональные отношения
- •Например:
- •Задание к лабораторной работе
- •Правило произведения Теоретико – множественная формулировка правила произведения
- •Комбинаторная формулировка правила произведения
- •Сложный выбор объектов
- •Соединения без повторений
- •Перестановки
- •Размещения из n элементов по m
- •Решение:
- •Сочетания
- •Свойства сочетаний
- •Соединения с повторениями
- •Размещения с повторениями
- •Сочетания с повторениями
- •Формулы пересчета для основных видов комбинаторных соединений
- •Принцип включения- исключения
- •Частные случаи формулы включений и исключений
- •Задача о беспорядках
- •Задача o встречах
- •Перестановки без фиксированных пар
- •Распределения объектов по ячейкам
- •Распределение одинаковых объектов
- •Вместимость ячеек задана
- •Распределение различных объектов по ячейкам с учётом их порядка в различных ячейках Вместимость ячеек неограниченна, ячейки могут быть пустыми
- •Вместимость ячеек неограниченна, ячейки не могут быть пустыми
- •Задания к лабораторной работе
- •Вариант №1.
- •Вариант №2.
- •Вариант №3.
- •Вариант №4.
- •Вариант №5.
- •Вариант №6.
- •Вариант №7.
- •Вариант №8.
- •Вариант №9.
- •Вариант №10.
- •Вариант №11.
- •Вариант №12.
- •Вариант №13.
- •Вариант №14.
- •Вариант №15.
- •Вариант №16.
- •Вариант №17.
- •Вариант №18.
- •Вариант №19.
- •Вариант №20.
- •Вариант №21.
- •Вариант №22.
- •5.Сколькими способами можно переставить буквы в слове «тартар», чтобы одинаковые буквы не шли друг за другом? Вариант №23.
- •Вариант №24.
- •Вариант №25.
- •Вариант №26.
- •Вариант №27.
- •Вариант №28.
- •Вариант №29.
- •Вариант №30.
- •Контрольные вопросы
- •8. Сформулировать общую постановку задачи распределения объектов по ячейкам.
- •Булевы функции. Законы алгебры логики. Аналитические способы описания. Полные системы функций
- •Теоретическая справка Определение функции алгебры логики
- •Табличный способ представления фал
- •Графическое представление фал
- •Функции алгебры логики одного аргумента
- •Функции алгебры логики двух аргументов
- •Элементарные функции алгебры логики
- •Условные приоритеты булевых функций
- •Выражение одних элементарных функций через другие
- •Аналитическая запись фал
- •Дизъюнктивная нормальная форма (днф)
- •Дизъюнктивная совершенная нормальная форма (дснф)
- •Алгоритм перехода от табличного задания функции к дснф
- •Конъюнктивная совершенная нормальная форма
- •Алгоритм построения конъюнктивной совершенной нормальной формы
- •Полные системы фал
- •Задание к лабораторной работе
- •Контрольные вопросы
- •Методы минимизации функций алгебры логики.
- •Теоретическая справка Основные определения
- •Минимизация фал на кубе
- •Метод Квайна минимизации булевых функций
- •Метод Мак-Класки минимизации булевых функций
- •Графический метод минимизации: карты Карно и диаграммы Вейча
- •Основные принципы построения карт Карно
- •Задание к лабораторной работе
- •Алгоритм генерации варианта
- •Контрольные вопросы
Условные приоритеты булевых функций
Каждая булева функция имеет свой приоритет при выполнении элементарных функций.
1. ( ) |
2. отрицание ( |
3. & |
4. ≡ |
Замечание. В пределах одного приоритета операции в выражении выполняются слева направо.
Например:
Дана функция
.
Составить таблицу истинности функции 3-х переменных: F (x, y, z).
Изобразить функцию графически.
Решение:
Расставим порядок выполнения действий, соблюдая приоритеты.
2
5 3 6 4 1
Выполним операции согласно порядку от 1 до 6.
Таблица истинности функции F(x, y, z)
x |
y |
z |
1 |
2 |
3 |
4 |
5 |
F(x,y,z) |
0 |
0 |
0 |
1 |
0 |
1 |
0 |
0 |
0 |
0 |
0 |
1 |
0 |
1 |
0 |
0 |
1 |
1 |
0 |
1 |
0 |
1 |
0 |
0 |
0 |
1 |
1 |
0 |
1 |
1 |
0 |
1 |
0 |
1 |
1 |
0 |
1 |
0 |
0 |
1 |
0 |
1 |
0 |
1 |
1 |
1 |
0 |
1 |
1 |
0 |
0 |
0 |
0 |
0 |
1 |
1 |
0 |
1 |
0 |
0 |
0 |
0 |
0 |
1 |
1 |
1 |
1 |
0 |
0 |
0 |
0 |
0 |
Изобразим функцию на кубе:
.
Законы булевой алгебры
|
|
Коммутативность
Ассоциативность
Дистрибутивность
Идемпотентность
Закон отрицания отрицания
Закон исключающего третьего
Закон противоречия
|
Свойства констант
Законы де Моргана
Законы поглощения
Правила склеивания
Обобщенное склеивание
Правило вычеркивания
|
Свойства , ,
|
|
Свойства импликации
Свойства
|
Свойства функций Шеффера и стрелки Пирса
Функции и связаны соотношениями аналогичными формулам де Моргана
|