
- •1 Земляные сооружения и технологические схемы работ
- •2.Классификация машин для земляных работ по назначению
- •3. Предельная несущая способность грунта
- •4 Сопротивление грунтов сжатию и сдвигу
- •5. Физико-механические свойства грунтов
- •6 Основные схемы резания грунтов
- •7. Основные теории для расчета сил резания и копания грунтов.
- •8. Расчет сил резанья по теории Ветрова.
- •9.Рачет сил резания элементарным профилем (теория Зелинина)
- •11.Влияние скорости на сопротивление резанию
- •12. Закономерности резания двумя параллельными профилями .
- •13 Расчёт сил резания периметром
- •14.Схема сил сопротивления копанию отвалом бульдозера с зубьями
- •15 Расчет сил сопротивления копания ковшом скрепера
- •16.Схема сил при копании отвалом грейдера
- •17. Рекомендации по созданию рабочих органов. Геометрия ножа
- •18.Сопротивление движению гусеничной машины
- •19.Сопротивление качению ведомого и ведущего колеса.
- •(Из конспекта)
- •20.Сопротивление резанию при постоянном сечении стружки.
- •21.Определение категории грунта по сложности разработки. Схема ударника ДорНии.
- •22. Удельное сопротивление грунтов резанию.
- •23.Определение обьёма призмы волочения для бульдозерного отвала.
- •24.Закономерности уплотнения грунтов, компрессионная кривая, влияния влажности.
- •26. Общие сведения о машинах для земляных работ. Классификация мзр, системы управления.
- •27.Выбор силового оборудования мзр. Режимы работы.
- •28. Шагающее оборудование машин для земляных работ.
- •30. Виды рабочего оборудования экскаватора и их схемы.
- •Механизмы поворота одноковшового экскаватора. Схемы механизмов.
- •33 Напорные механизмы одноковшовых экскаваторов. Схемы.
- •Конструктивные схемы гидравлических экскаваторов.
- •Индексация и основные параметры одноковшовых экскаваторов.
- •Основные параметры и техническая характеристика . Конструктивные особенности ковшей экскаваторов. Схемы
- •37. Экскаваторы планировщики. Схемы. Параметры.
- •38.Многоковшые экскаваторы. Классификация.
- •40. Многоковшовые роторные траншейные экскаваторы. Схемы.
- •41. Многоковшовый цепной экскаватор поперечного действия. Схемы.
- •42. Роторные поворотные экскаваторы. Схемы. Параметры.
- •43. Одноковшовые погрузчики. Схемы. Параметры.
- •44 Классификация скреперов, технология работ. Схемы
- •45 Конструктивные схемы и параметры скреперов.
- •46 Классификация бульдозеров и технологические схемы работ.
- •47. Конструктивные схемы бульдозеров. Основные параметры.
- •48.Конструктивная схема автогрейдера. Основные параметры.
- •49.Автогрейдеры. Классификация. Схема работы.
- •50 Грейдеры-элеваторы. Схемы рабочих органов. Конвейеры
- •51 Рыхлители. Классификация.Устройство
- •52 Машины для уплотнения грунтов. Конструктивные схемы. Параметры
- •53Статический расчет одноковшового экскаватора
- •54 Землесосные установки. Схема работы и передвижения
- •55.Расчёт рабочего оборудования одноковшового экскаватора.
- •57 .Выбор рабочих скоростей экскаваторов поперечного копания
- •58.Определение мощности привода цепи траншейного экскаватора
- •59. Соотношение скоростей роторного траншейного экскаватора и ротора.
- •60.Расчет одноковшовых погрузчиков
- •61 Тяговый расчет скрепера
- •62 Тяговый расчет бульдозера.
- •63 Расчетная схема автогрейдера в рабочем режиме
- •64Расчетная схема автогрейдера в случае встречи с препядствием
- •65 Определение пропускной способности отвала грейдера
- •Скорость перемещения грунтовой призмы вдоль отвала
- •Подставляя в это выражение значения l1, определяемое из косоугольного треугольника abd, получим
- •66 Выбор расчетных положений и определение сил, действующих на рыхлитель
- •67.Производительность одноковшового экскаватора.
- •68.Определить производительность бульдозера при планировачных работах
- •69.Определение производительность скреперов:
- •70.Тяговое усилие по сцеплению
- •71.Определение объема призмы волочения для бульдозера:
- •73 Определение пути заполнения и разгрузки ковша скрепера
- •74. Определение скорости копания ковшом экскаватора с канатным приводом
4 Сопротивление грунтов сжатию и сдвигу
Во взаимодействии раб. Органов и ходовых систем машин сопротивление сжатию мы рассмотрим с огранич. возможн. бокового расширения
σ=σо*th*k/σo*h
k-коэф. Объемного смятия 1-линейный уч.
Th-гиперболический тангенс 2-опережающий уч.
σо- предел несущей способности грунта 3-пластичное течение грунта
σо[w-14%] супеси 1.4МПа К*10-7 H/м3
супеси=0.11
суглинки=0.15
глины=0.21
Сопротивление сдвигу
Закон
кулона T=To+Ntgφ;
N-номин.
Нагрузка,,φ-угол внутр.трения грунта
Внутреннее трение супесь 0.8…0.5
Суглинок 0.55…0.4
Глина 0.42…0.25
Внешнее трение
Грунт-сталь(tgβ) грунт-грунт(tgρ)
0.43…0.5 0.65…0.7 0.5…0.6 0.75…0.85
0.6…0.7 0.85…0.95
5. Физико-механические свойства грунтов
Основными физико-механическими свойствами грунтов являются:
1. Гранулометрический состав, т. е. процентное содержание по весу частиц различной крупности: гальки (40 мм), гравия (2—40 мм), песка (0,25—2 мм), песчаной пыли (0,05— 0,25 мм), пылеватых частиц (0,005—0,05 мм) и глинистых частиц (менее 0,005 мм).
2. Объемный вес, т. е. отношение веса грунта к его объему при естественной влажности. Для грунтов он составляет от 15 до 20 кн/м3 (1,5—2 г/,и3).
3. Пористост ь — объем пор, заполненных водой и воздухом в процентах от общего объема грунта. Она характеризуется коэффициентом пористости, представляющим собой отношение объема занятых водой и воздухом пор к объему твердых частиц.
4. Весовая влажность — отношение веса воды к весу сухого грунта в %.
5. Связность (взаимное сцепление частиц) — способность грунта сопротивляться разделению на отдельные частицы под действием внешних нагрузок. Типичным представителем связных грунтов являются глину, несвязных грунтов — сухие пески.
6. Пластичность — свойство грунта изменять свою форму под действием внешних сил и сохранять эту форму после удаления внешних сил. Наибольшей пластичностью отличаются влажные глины; песок и промытый гравий — материалы непластичные.
7. Прочность. В связи с тем, что грунты, особенно не связные, имеют незначительную прочность, не удается пользойваться такими характеристиками, как прочность на одноосное.
8. Сопротивление сдвигу. Под действием механической нагрузки грунт разрушается в результате деформаций, превосходящих предельные значения. Считается, что эти деформации происходят по плоскостям скольжения (плоскостям, по которым происходит сдвиг одних частиц относительно других). При разрушении грунта частицы сопротивляются относитель—ному сдвигу. Это сопротивление характеризуется величиной, сцепления. Сопротивление сдвигу по плоскости скольжения уве-личивается в результате внутреннего трения частиц, возникаю щего под действием нормальных напряжений.
Если выделить условно сдвигаемую частицу грунта, то напряжения, действующие в плоскости скольжения частицы, могут быть упрощенно представлены так, как показано на рис. 49.
Рис. 48. Предел прочности на одноосное сжатие мерзлых грунтов в зависимости от температуры и влажности ш в :
Рис. Условия
равновесия частицы грунта на откосе
9. Угол естественного откоса ф — угол у основания конуса, который образуется при отсыпании разрыхленного грунта с некоторой высоты. Этот угол зависит от величины коэффициента внутреннего трения и от связности. Для несвязных грунтов угол естественного откоса равен углу внутреннего трения.
10. Сопротивл ени е грунта вдавливанию. При вдавливании в грунт штампа или какой-либо опорной поверхности (ходовой части машины, элемента рабочего органа) под штампом происходят деформации в условиях, близких к всестороннему сжатию (т. е. когда на элемент грунта действуют одновременно окружающий массив и поверхность штампа так, что элемент оказывается сжатым со всех сторон).
Чем ближе к поверхности грунта расположен элемент, тем меньше влияние всестороннего сжатия. Вдавливание на небольшую глубину (до 1 см) называют смятием. При этом усилие, необходимое для вдавливания штампа, во много раз меньше, чем при вдавливании штампа на значительную глубину.
В частности, допускаемые нагрузки для ходовых частей” машин предусматривают погружение до 6—12 см. Величина усилия, необходимого для вдавливания штампа, зависит от размеров штампа. Чем меньше он, тем больше должно быть удельное усилие при вдавливании.
11. Абразивность (от латинского слова abrasio — соскабливать) — способность материала оказывать истирающее действие на другой материал. Абразивность грунтов из горных пород в значительной степени определяет износ рабочих органов землеройных машин. Имеются различные методы оценки аб-разивности, однако все они пока еще являются относительными, так как износ зависит от удельных давлений, скорости взаимного перемещения и прочностных показателей. При одних и тех же прочностных показателях величина износа может быть различной.
Коэффициент трения грунта о сталь зависит от состояния поверхности стали и физико-механических свойств грунта.
13. Разрыхляемость определяется как отношение объема разрыхленного грунта Vp к объему V первоначальному (в плотном теле).
Первоначальное разрыхление — это разрыхление, наблюдаемое сразу после отделения грунта от массива; остаточное разрыхление наблюдается через некоторое время после укладки грунта в отвал или насыпь, где происходит его самоуплотнение без трамбования.