Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
шпора эконометрика.docx
Скачиваний:
6
Добавлен:
01.03.2025
Размер:
96.32 Кб
Скачать

Структурная приведенная формы модели.

Структурная форма модели

y1=b12*y2+b13*y3+b1n*yn+a11*x1+a12*x2+…+a1m*xm+E1

y2=b21*y1+b23*y3+b2n*yn+a21*x1+…+a2m*xm+E2

yn=bn1*y1+bn2*y2+bnn-1*yn-1+an1*x1+…+anm*xm+En

СФМ содержит эндо- и экзогенные переменные. Эндогенные – зависимые переменные, число которых равно числу уравнений в системе (y). Экзогенные – независимые переменные х.

Простейшая СФМ:

y1=b12*y2+a11*x1

y2=b21*y1+a22*x2

aij, bij – структурные коэффициенты модели. Чтобы определить структурные коэффициенты модели СФМ преобразуется в приведенную форму модели ПФМ, которая представляет собой систему линейных функций эндогенных переменных от экзогенных.

y1=δ11*x1+ δ12+x2

y2= δ21*x1+ δ22*x2

Определим первое приведенное уравнение. Из первого уравнения СФМ выражается y2. подставляется в систему, решается и получаем δ11 и δ12

Идентификация эконометрических уравнений.

Идентификация – единственное соответствие между приведенной и структурной формами модели. С позиции идентифицируемости модели делятся на 3 вида:

идентифицируемые (если число коэффициентов СФМ = число коэффициентов ПФМ)

неиднтифицируемость (число коэффициентов СФМ > числа ПФМ)

сверхидентифицируемость (число структурных коэффициентов СФМ < числа ПФМ)

в Целях идентификации каждое уравнение системы проверяется с помощью необходимого и достаточного условия.

Необходимое условие идентификации: необходимо, чтобы число экзогенных переменных отсутствующих в данном уравнении, но присутствующих в системе (Д) было равно числу эндогенных переменных в данном уравнении без одного (Н). Счетное правило: Д+1=Н – идентифицируются; Д+1<Н – неидентифицируются; Д+1>Н – сверхидентифицруются.

Достаточное условие: если по отсутствующим в нем переменным (эндо- и экзогенным) можно из коэффициентов при них в других уравнениях системы получить матрицу, определитель которой =0, а ранг ≥ числа эндогенных переменных в системе без одного.

Определителем Грама (англ.) (грамианом) системы векторов в евклидовом пространстве называется определитель матрицы Грама этой

Cистемы:

где — скалярное произведение векторов Ei и Ej .

Матрица Грама возникает из следующей задачи линейной алгебры:

Пусть в евклидовом пространстве V система векторов порождает подпространство U. Зная, чему равны скалярные произведения вектора X из U с каждым из этих векторов, найти коэффициенты разложения вектора X по векторам .

Исходя из разложения

получается линейная система уравнений с матрицей Грама:

Эта задача однозначно разрешима тогда и только тогда, когда векторы линейно независимы. Поэтому обращение в нуль определителя Грама системы векторов — это критерий их линейной зависимости.

Ковариацией случайных величин и называется число

Справедливы равенства: ; ; ; .

Дисперсия суммы нескольких случайных величин вычисляется по любой из следующих формул:

Регрессио́нный (линейный) анализ— статистический метод исследования влияния одной или нескольких независимых переменных на зависимую переменную . Независимые переменные иначе называют регрессорами или предикторами, а зависимые переменные — критериальными. Терминология зависимых и независимых переменных отражает лишь математическую зависимость переменных (см. Ложная корреляция), а не причинно-следственные отношения.

Цели регрессионного анализа

Определение степени детерминированности вариации критериальной (зависимой) переменной предикторами (независимыми переменными)

Предсказание значения зависимой переменной с помощью независимой(-ых)

Определение вклада отдельных независимых переменных в вариацию зависимой

Регрессионный анализ нельзя использовать для определения наличия связи между переменными, поскольку наличие такой связи и есть предпосылка для применения анализа.

Математическое определение регрессии

Строго регрессионную зависимость можно определить следующим образом. Пусть Y, — случайные величины с заданным совместным распределением вероятностей. Если для каждого набора значений определено условное математическое ожидание

(уравнение регрессии в общем виде), то функция называется регрессией величины Y по величинам , а её график — линией регрессии Y по , или уравнением регрессии. Зависимость Y от проявляется в изменении средних значений Y при изменении . Хотя при каждом фиксированном наборе значений величина Y остаётся случайной величиной с определённым рассеянием.

Для выяснения вопроса, насколько точно регрессионный анализ оценивает изменение Y при изменении , используется средняя величина дисперсии Y при разных наборах значений (фактически речь идет о мере рассеяния зависимой переменной вокруг линии регрессии).

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]