
- •1.1. Модель радиотехнической системы передачи информации
- •1.2. Источник информации
- •1.3. Теорема дискретизации
- •1.3.1. Практические вопросы дискретизации реальных сигналов
- •1.4. Дискретизация двумерных сигналов (изображений)
- •1.5. Квантование сообщений. Ошибки квантования
- •1.6. Количество информации, энтропия источника сообщений
- •1.6.1. Энтропия сложных сообщений, избыточность источника
- •2. Основы экономного кодирования
- •2.1. Цель сжатия данных и типы систем сжатия
- •2.1.1. Сжатие без потерь информации
- •2.1.2. Сжатие с потерей информации
- •2.2. Коды без памяти. Коды Хаффмена
- •2.2.1. Алгоритм Хаффмена
- •2.2.2. Границы энтропии для кода Хаффмена
- •2.3. Коды с памятью
- •2.4. Арифметическое кодирование
- •2.4.1. Кодирование
- •2.4.2. Декодирование
- •2.5. Словарные методы кодирования. Метод Зива-Лемпела
- •2.5.1. Кодирование
- •2.5.2. Декодирование
- •2.6. Кодирование длин повторений
- •2.7. Дифференциальное кодирование
- •2.8. Методы сжатия с потерей информации
- •2.8.1. Кодирование преобразований. Стандарт сжатия jpeg
- •Или же, в матричной форме,
- •2.8.2. Фрактальный метод
- •2.8.3. Рекурсивный (волновой) алгоритм
- •2.9. Методы сжатия подвижных изображений (видео)
- •2.10. Методы сжатия речевых сигналов
- •2.10.1. Кодирование формы сигнала
- •2.10.2. Кодирование источника
- •2.10.3. Гибридные методы кодирования речи
- •3. Основы помехоустойчивого кодирования
- •3.1. Основные принципы. Типы кодов
- •3.2. Линейные блочные коды
- •3.2.1. Код с проверкой на четность
- •3.2.2. Итеративный код
- •3.2.3. Порождающая матрица линейного блочного кода
- •3.2.4. Проверочная матрица
- •3.2.5. Дуальные коды
- •3.2.6. Синдром и обнаружение ошибок
- •3.2.7. Синдромное декодирование линейных блочных кодов
- •3.2.8. Мажоритарное декодирование линейных блочных кодов
- •3.2.9. Декодирование методом максимального правдоподобия
- •Поскольку
- •Если принятый сигнал дискретизован и Si – I-й отсчет принятого сигнала.
- •3.2.10. Вес и расстояние Хемминга. Способность кодов обнаруживать и исправлять ошибки
- •3.3. Полиномиальные коды
- •3.3.1. Циклические коды
- •1.3.2. Кодирование с использованием циклических кодов
- •3.3.3. Вычисление синдрома и исправление ошибок в циклических кодах
- •3.3.4. Неалгебраические методы декодирования циклических кодов
- •4. Сверточные коды
- •4.1. Кодирование с использованием сверточных кодов
- •4.2. Синдромное декодирование сверточных кодов
- •4.3. Кодовое дерево и решетчатая диаграмма
- •4.4. Декодирование сверточных кодов. Алгоритм Витерби
- •4.5. Алгоритмы поиска по решетке
- •5. Применение корректирующего кодирования в системах связи
- •5.1. Каскадные коды
- •5.2. Кодирование с перемежением
2.6. Кодирование длин повторений
Кодирование длин участков (или повторений) может быть достаточно эффективным при сжатии двоичных данных, например, черно-белых факсимильных изображений, черно-белых изображений, содержащих множество прямых линий и однородных участков, схем и т.п. Кодирование длин повторений является одним из элементов известного алгоритма сжатия изображений JPEG.
Идея сжатия данных на основе кодирования длин повторений состоит в том, что вместо кодирования собственно данных подвергаются кодированию числа, соответствующие длинам участков, на которых данные сохраняют неизменное значение.
Предположим, что нужно закодировать двоичное (двухцветное) изображение размером 8 х 8 элементов, приведенное на рис. 2.7.
Рис. 2.7
Просканируем это изображение по строкам (двум цветам на изображении будут соответствовать 0 и 1), в результате получим двоичный вектор данных
X= (0111000011110000000100000001000000010000000111100011110111101111)
длиной 64 бита (скорость исходного кода составляет 1 бит на элемент изображения).
Выделим в векторе X участки, на которых данные сохраняют неизменное значение, и определим их длины. Результирующая последовательность длин участков - положительных целых чисел, соответствующих исходному вектору данных X, - будет иметь вид r = (1, 3, 4, 4, 7, 1, 7, 1, 7, 1, 7, 4, 3, 4, 1, 4, 1, 4).
Теперь эту последовательность, в которой заметна определенная повторяемость (единиц и четверок гораздо больше, чем других символов), можно закодировать каким-либо статистическим кодом, например, кодом Хаффмена без памяти, имеющим таблицу кодирования (табл. 2.8)
Таблица 2.8
-
Кодер
Длина участка
Кодовое слово
4
0
1
10
7
110
3
111
Для того, чтобы указать, что кодируемая последовательность начинается с нуля, добавим в начале кодового слова префиксный символ 0. В результате получим кодовое слово B (r) = ( 0100011010110101101011001110100100 ) длиной в 34 бита, то есть результирующая скорость кода R составит 34/64, или немногим более 0,5 бита на элемент изображения. При сжатии изображений большего размера и содержащих множество повторяющихся элементов эффективность сжатия может оказаться существенно более высокой.
Н
иже
приведен другой пример использования
кодирования длин повторений, когда в
цифровых данных встречаются участки с
большим количеством нулевых значений.
Всякий раз, когда в потоке данных
встречается “ноль”,
он кодируется двумя числами. Первое -
0, являющееся флагом начала кодирования
длины потока нулей, и второе – количество
нулей в очередной группе. Если среднее
число нулей в группе больше двух, будет
иметь место сжатие. С другой стороны,
большое число отдельных нулей может
привести даже к увеличению размера
кодируемого файла:
Еще одним простым и широко используемым для сжатия изображений и звуковых сигналов методом неразрушающего кодирования является метод дифференциального кодирования.