
- •Термодинамическая система
- •2)Параметры состояния и уравнения состояния термодинамической системы. Уравнения состояния идеального и реального газа.
- •3)Термодинамические процессы
- •4)Первый закон термодинамики
- •6) Второй закон термодинамики
- •8)Теплообмен, общие сведения. Виды элементарного переноса теплоты.
- •9.Температурное поле.
- •10)Теплопроводность, закон Фурье.
- •11) Конвективный теплообмен.
- •13) Основной закон теплопроводности
- •16) Тепловой, гидравлический, компоновочный и поверочный расчет теплообменных аппаратов.
- •17. Системы теплоснабжения.
- •18.Системы централизованного теплоснабжения (водяные системы). Схемы присоединения абонентских установок.
- •19. Отопление. Расход теплоты на отопление.
- •20. Вентиляция. Расход теплоты на вентиляцию
- •21) Горячее водоснабжение. Расход теплоты на горячее водоснабжение
- •24) Схемы тепловых сетей. Оборудование тепловых сетей и тепловых пунктов
- •29. Принцип действия паровых и газовых турбин. Активные и реативные турбиныю
- •31. Холодильные машины. Холодильный коэффициент. Хладагенты и хладоносители.
- •33. Конструкции холодильных машин. Пароэжекторная холодильная машина.
- •37) Высшая и низшая теплоты сгорания, условное топливо
- •38) Определение количества воздуха, необходимого для горения топлива. Определение объема продуктов сгорания топлива.
- •39) Уравнение теплового баланса котельного агрегата. Кпд котельного агрегата и расход топлива.
- •40) Водный режим парового котла
- •26) Устройство элеватора, коэффициент смешения
- •25) Трубы, применение для сооружения теплопроводов, основные требования
- •27) Опоры и компенсаторы
- •28) Определение количества воздуха, необходимого для горения топлива. Определение объема продуктов сгорания топлива
- •23) Регулирование тепловых нагрузок при централизованном теплоснабжении. Графики температур.
- •35) Общая схема и описание работы парового котла.
- •36) Виды энергетических топлив, их состав и основные характеристики
6) Второй закон термодинамики
Р. Клаузиус (1850 г.) сформулировал так: теплота не может сама собой переходить от менее нагретого тела к более нагретому, т. е. некомпенсированный переход теплоты от тела с меньшей температурой невозможен.
Позднее Р. Клаузиус и В. Томсон (Кельвин) дали наиболее общие формулировки второго закона термодинамики, из которых следует, что:
1. Невозможен процесс, при котором теплота переходила бы самопроизвольно от холодных тел к телам нагретым.
2. Не вся теплота, полученная от теплоотдатчика, может перейти в работу, а только часть ее. Часть теплоты должна перейти в теплоприемник.
7) Вода и водяной пар нашли широкое применение в качестве рабочих тел в паровых турбинах тепловых машин, атомных установках и в качестве теплоносителей в различного рада теплообменных аппаратах химико-технологических производств.
Газообразное тело, сосуществующее с кипящей жидкостью называется паром и значительно отличается по своим термодинамическим свойствам от свойств идеального газа.
Парообразованием называется процесс превращения вещества из жидкого состояния в парообразное.
Кипением называется процесс превращения жидкости, кипящей во всем её объеме, в пар при подводе к ней теплоты, а при отводе от пара теплоты происходит обратный процесс - конденсация. Пар, соприкасающейся с жидкостью, из которой он получается и находящейся с ней в термодинамическом равновесии называется насыщенным.
Сухой насыщенный пар - пар, не содержащий в себе жидкость.
Влажным паром называется механическая смесь, состоящая из сухого пара и мельчайших капелек жидкости и характеризуется степенью сухости - Х или степенью влажности - (1 - Х).
Перегретым паром называется пар, полученный из сухого насыщенного пара при подводе к нему при P = Const некоторого количества теплоты и вызванного этим повышением его температуры. Разность между температурами перегретого пара - tП и сухого насыщенного - tН называется степенью перегрева.
Д
о
сих пор для реальных газов предложено
много уравнений состояния. Однако все
они относятся только к ограниченной
области состояний. Для технически важных
веществ, например, для водяного пара
разработаны довольно точные уравнения,
с помощью которых рассчитаны параметры
и функции состояния в широкой области
температур и давлений и сведены в таблицы
и на их основе эти характеристики
графически представлены в виде диаграмм
в P - V, T - S и h - S координатах. Эти диаграммы
дают возможность наглядно представить
процессы и их энергетические особенности.
Фазовая P - V диаграмма системы, состоящей из жидкости и пара, представляет собой график зависимости удельных объемов кипящей воды - v' и сухого насыщенного пара - v" от давления .
8)Теплообмен, общие сведения. Виды элементарного переноса теплоты.
Теория теплообмена — наука о процессах распределения тепла. Их разделяют на 3 основных вида передачи теплоты:
Теплопроводность
Конвекция
Тепловое излучение
Теплопроводность — молекулярный перенос теплоты в сплошной среде. Возникает при неравномерном распределении температур в теле или среде.
Конфекция — перенос теплоты при перемещении объектов газа или жидкости в пространстве
Теплообмен между жидкостью или газом и поверхностью твердого тела, называется конвекцией теплообмена.
Тепловое излучение — процесс распространения теплоты с электромагнитными волнами. Этот вид передачи теплоты обусловлен превращением внутренней энергии вещества в энергию излучения, переносом излучения и его поглощенным веществом.
Теплообмен обусловленный совместным переносом теплоты излучения теплопроводностью и конвекцией называется радиационно—конвективным. Если теплота передается теплопроводность и осуществляется, то процесс называется радиационно—конвективным.
Процесс теплообмена между 2-мя теплоносителями (т.е. движущимися средами) для переноса теплоты, разделенными твердой стенкой, называется теплопередачей