
- •1. Методика преподавания математики и ее задачи.
- •2.Методика введения понятия «Производная». Производная элементарных функций. Приложение производной.
- •3.Цели обучения математике.
- •4.Методика изучения тригонометрических функций
- •5.Основные дидактические принципы обучения математике. Методы и формы обучения.
- •6.Методика изучения показательной и логарифмической функции
- •7.Анализ и синтез как методы научного познания, их применение при обучении математике.
- •8.Методика ознакомления учащихся с понятием «Вектор», основными формулами векторной алгебры в школе (модуль вектора, равенство, координаты, сложение и умножение вектора на число).
- •9.Индукция и дедукция в преподавании математики.
- •10.Многочлены. Изучение действий над многочленами. Формулы сокращенного умножения и методика их изучения.
- •12.Методика изучения многоугольников в курсе планиметрии.
- •13.Типы уроков по математике и их структура.
- •14.Методика обучения тождественным преобразованиям в курсе алгебры средней школы.
- •15.Проблемный метод обучения математике. Примеры.
- •16.Методика изучения числовых и функциональных неравенств в школьном курсе алгебры. Метод интервалов.
- •17.Самостоятельная работа учащихся на уроке. Виды самостоятельной работы учащихся на уроке.
- •18.Квадратичная функция и методика ее изучения в школе.
- •19.Математические понятия. Методика их формирования. Зависимость между видовыми и родовыми математическими понятиями.
- •20. Площадь многоугольников.
- •21.Методика работы над определениями и понятиями. Примеры.
- •22. Методика изучения темы Декартовы координаты на плоскости.
- •23.Виды теорем и связи между ними. Необходимые и достаточные условия. Примеры.
- •24.Методика изучения нумерации натуральных чисел.
- •25.Методика работы над аксиомой, теоремой. Методы доказательств. Примеры.
- •26. Методика изучения темы «Делимость натуральных чисел».
- •27.Задачи как применение теории и как средство развития математического мышления. Классификация задач. Методика обучения учащихся умению решать задачи.
- •28.Методика изучения арифметических действий над натуральными числами. Ознакомление учащихся с законами арифметических действий.
- •29.Формы и методы оценки и контроля знаний по математике Тестовые формы контроля.
- •30.Методика введения понятия «Интеграл». Приложение интеграла.
- •31.Работа с учебником по математике. Методика работы с учебными пособиями.
- •32.Методика введения понятия десятичной дроби. Сравнение десятичных дробей. Арифметические действия с десятичными дробями.
- •33.Методика изучения уравнений в курсе алгебры основной школы. Связь уравнений с другими содержательными линиями школьного курса математики.
- •34.Методика изучения многогранников.
- •35. Логическое строение школьного курса геометрии. Методика изучения аксиом.
- •36.Методика введения понятия обыкновенной дроби. Сравнение обыкновенных дробей с одинаковыми и разными знаменателями.
- •37.Обучение доказательству теорем в школе.
- •38.Методика изучения арифметических действий над положительными и отрицательными числами.
- •39.Прямые и плоскости в пространстве.
- •40.Методика введения понятия отрицательного числа. Противоположные числа. Модуль числа. Сравнение положительных и отрицательных чисел.
- •41.Ознакомление учащихся с понятием иррационального числа. Изучение множества действительных чисел и действий над ними.
- •42.Окружность и круг в школьном курсе планиметрии и методика их изучения в школе.
- •43.Методика изучения рациональных чисел и действий над ними (6-8 классы)
- •44. Правильные многоугольники и методика их изучения в школе.
- •46. Методика изучения рациональных и иррациональных выражений.
- •47.Тела вращения и методика их изучения в школе.
- •48.Методика изучения темы «Проценты».
- •50. Методика изучения числовых и буквенных выражений в средней школе. Упрощение выражений. Методика изучения темы коэффициент, приведение подобных слагаемых, правило знаков, раскрытие скобок.
- •51.Общая характеристика методических подходов к развитию понятия числа в школьном курсе математики.
- •52. Методика введения понятия одночлена.
- •53.Методика работы с текстовыми задачами на составление уравнений.
- •54.Элементы комбинаторики, статистики и теории вероятностей в 5-6 классах
1. Методика преподавания математики и ее задачи.
Слово «методика» в переводе с древнегреческого означает «способ познания», «путь исследования». Метод - это способ достижения какой-либо цели, решения конкретной учебной задачи. Существу-ют разные точки зрения на содержание понятия «методика». Одни, признавая методику наукой педагогической, рассматривали ее как частную дидактику с общими для всех предметов принципами обучения. Другие считали методику специальной педагогической наукой, решающей все задачи обучения и развития личности через содержание предмета. Приведем несколько примеров определений. Методика преподавания математики - наука о математике как учебном предмете и закономерностях процесса обучения математике учащихся различных возрастных групп и способностей. Методика обучения математике - это педагогическая наука о задачах, содержании и методах обучения математике. Она изучает и исследует процесс обучения математике в целях повышения его эффективности и качества. Методика обучения математике рассматривает вопрос о том, как надо преподавать математику. Методика преподавания математики - раздел педагогики, исследующий закономерности обучения математике на определенном уровне ее развития в соответствии с целями обучения подрастающего поколения, поставленными обществом. Методика обучения математике призвана исследовать проблемы математического образования, обучения матема-тике и математического воспитания. Основные задачи методики преподавания математики: Определить конкретные цели изучения математики по классам, темам урокам; Отбирать содержание учебного предмета в соответствии с целями и познавательными возможностями учащихся; Разработать наиболее рациональные методы и организационные формы обучения, направленные на достижение поставленных целей; Рассмотреть необходимые средства обучения и разработать рекомендации по их применению в практике работы учителя.
2.Методика введения понятия «Производная». Производная элементарных функций. Приложение производной.
I. Привести подводящую задачу, раскрывающую физический смысл понятия производной: свободное падение тела, которое не является равномерным. Охарактеризуем скорость падения в каждый данный момент времени t , т.е. введём понятие мгновенной скорости свободного падения тела.
В общем случае, с любым реальным процессом может быть связана задача:
Пусть -параметр данного процесса, зависимости от x ; найти скорость изменения параметра в момент, когда решение задачи сводится к нахождению отношения приращения параметра , соответствующую приращению у .
II. Сформулировать определение понятия производной.
Так как в определении отсутствует понятие предела, то первоначально следует сформировать у учащихся понятие приращения как изменения и аргумента и функции.
После рассмотрения геометрического смысла производной вводим определение:
Производной функции в точке называется число, к которому стремится разностное отношение:
Полезен небольшой анализ формулировки определения, позволяющий чётче выделить признаки данного понятия.
Закреплению определения производной способствует вопрос: "Как найти производную функции в точке ?", ответ на который может быть дан в форме алгоритма: 1) значению придаём приращение ; 2) находим приращение функции в точке ; 3) составляем разностное соотношение; 4) находим число (если такое число существует), к которому стремится функция.
III. Конкретизировать понятие производной (путём вычисления производной по определению: выяснение её геометрического смысла, графическое отыскание производной)
Первый пример на выяснение производной полезно выполнить на двух уровнях: а) задано конкретным числом; б) берётся в общем виде.
Например: Дана функция . Найти её производную в точке: а) x=2;
Для конкретизации понятия производной может быть использован графический метод