- •1… Химическая стехиометрия. Эквивалент вещества. Эквивалентная масса и эквивалентный объем. Закон эквивалентов.
- •2… Расчет эквивалентов и эквивалентных масс различных классов неорганических соединений
- •3… Химическая термодинамика. Термодинамическая система. Функции и параметры состояния. Понятие о стандартном состоянии.
- •4…. Первое начало термодинамики. Расчет теплового эффекта для изобарного процесса. Энтальпия. Стандартная энтальпия.
- •5.. Термохимия. Термохимические уравнения. Закон Лавуазье-Лапласа и Закон Гесса
- •6… Следствие из закона Гесса. Расчет изменения энтальпии, энтропии и энергии Гиббса в ходе химических реакций.
- •7.. Энтропия. Второе и третье начала термодинамики. Оценка изменения энтропии в ходе химической реакции. Стандартная энтропия веществ. Зависимость энтропии от температуры.
- •9… Химическая кинетика. Скорость гомогенных и гетерогенных химических реакций. Истинная и средняя скорость химических реакций. Зависимость скорости химической реакции от различных факторов.
- •10…. Зависимость скорости реакции от концентрации реагирующих веществ. Закон действующих масс для простых и сложных реакций. Константа скорости реакции. Физический смысл константы скорости реакции.
- •11… Зависимость скорости реакции от температуры. Уравнение Вант-Гоффа, Основные положения теории активных соударений. Уравнение Аррениуса.
- •12… Теория переходного состояния. Энергетические диаграммы для эндотермических и экзотермических реакций.
- •13… Катализ. Гомогенный и гетерогенный катализ. Катализаторы и ингибиторы. Ферменты.
- •14… Химическое равновесие. Изменение концентрации реагирующих веществ и продуктов реакции с течением времени в обратимых реакциях.
- •15… Константа равновесия и факторы ее определяющие. Связь константы равновесия с изменением энергии Гиббса химической реакции.
- •16…. Смещение химического равновесия. Принцип Ле-Шателье. Влияние температуры, давления и концентрации на химическое равновесие.
- •17… Общее понятие о растворах. Способы выражения состава растворов.
- •18… Растворимость веществ. Насыщенные растворы. Произведение растворимости. Условие образования осадка малорастворимого соединения.
- •19… Коллигативные свойства растворов. Осмос. Осмотическое давление. Закон Вант» Гоффа. Понижение давления насыщенного пара растворителя. Закон Рауля. Эбуллиоскопия. Криоскопия. Антифризы.
- •20… Твердые растворы. Диаграммы состояния. Правило фаз Гиббса.
- •21… Электролитическая диссоциация. Равновесия в растворах электролитов. Степень диссоциации. Сильные и слабые электролиты.
- •22… Константа диссоциации. Факторы ее определяющие. Закон разбавления Оствальда.
- •23… Фазовая диаграмма воды. Ионное произведение воды. Водородный и гидроксильный показатели. Способы измерения и расчета рН и рОн.
- •24… Гидролиз солей. Классификация солей по их отношению к гидролизу.
- •1)Соли, образованные сильной кислотой и сильным основанием (гидролизу не подвергаются)
- •2)Соли, образованные слабым основанием и сильной кислотой
- •3)Соли, образованные слабой кислотой и сильным основанием
- •4)Соли, образованные слабой кислотой и слабым основанием
- •25… Сущность процесса гидролиза солей разного типа.
- •26… Комплексные соединения. Основные положения теории Вернера. Строение комплексного соединения. Механизм образования химической связи в комплексном соединении.
- •27… Электролитическая диссоциация комплексных соединений. Константа нестойкости.
- •28… Окислительно-восстановительные реакции. Электроотрицательность, степень окисления. Важнейшие окислители и восстановители.
- •29… Типы овр. Метод электронного баланса.
- •30… Электрохимия. Строение гальванического элемента Даниеля. Катодные и анодные процессы. Эдс.
- •31… Стандартный электродный потенциал. Электрохимический ряд напряжения металлов.
- •32… Уравнение Нернста. Вывод уравнение Нернста для металлического и водородного электрода.
- •34… Коррозия металлов. Классификация процессов коррозии. Стойкость металлов к коррозии. Пассивация.
- •35… Электрохимическая коррозия. Водородная и кислородная деполяризация,
- •36… Методы защиты от коррозии металлов. Механизм действия зашитых металлических покрытий
- •37… Электролиз. Сходство и отличия гальванического элемента и электролиза.
- •38… Электролиз расплавов и водных растворов электролитов.
- •39… Последовательность разрядки ионов на электродах при электролизе. Электролиз с использованием различных видов электродов.
- •40… Законы Фарадея. Области практического применения электролиза.
- •41… Строение атома. Квантово-механическое описание атома. Понятие о волновой функции.
- •42… Строение многоэлектронных атомов. Принцип минимума энергии. Принцип Паули. Правило Хунда.
- •43… Атомные орбитали. Квантовые числа: главное, орбитальное, магнитное, спиновое.
- •44… Периодические свойства. Энергия ионизации. Сродство к электрону. Электроотрицательность, Радиус атома.
- •45… Химическая связь. Виды химической связи. Свойства разных видов связей.
- •46… Метод молекулярных орбиталей. Строение молекулы водорода с позиции теории молекулярных орбиталей.
- •47… Основы зонной теории. Проводники, полупроводники и диэлектрики с позиции зонной теории.
- •48… Химия металлов. Свойства металлов. Классификация металлов и их распространенность в природе.
- •49… Металлургия. Типы восстановления металлов из руд.
- •50… Алюминий» титан. Свойства и применение
40… Законы Фарадея. Области практического применения электролиза.
Законы Фарадея: 1- масса вещества образующаяся при электролизе пропорциональна силе тока и времени электролиза, то есть кол-ву электричества прошедшему через электролит.
2- при одинаковом количестве электричества массы прореагировавших веществ относятся друг к другу как эквивалентные массы этих веществ.
41… Строение атома. Квантово-механическое описание атома. Понятие о волновой функции.
Атом состоит из электронов, протонов, все атомы, кроме водорода-1, содержат также нейтроны. Электрон является самой лёгкой из составляющих атом частиц с массой 9,11×10−28 г, отрицательным зарядом. Протоны обладают положительным зарядом. Нейтроны не обладают электрическим зарядом. Электроны в атоме притягиваются к ядру, между электронами также действует кулоновское взаимодействие. Эти же силы удерживают электроны внутри. Каждой орбитали соответствует свой уровень энергии. Электрон может перейти на уровень с большей энергией, поглотив фотон. При этом он окажется в новом квантовом состоянии с большей энергией. Аналогично, он может перейти на уровень с меньшей энергией, излучив фотон. Энергия фотона при этом будет равна разности энергий электрона на этих уровнях. Основной хар-кой е¯ в квантовой механике явл-ся волновая ф-ция.
Волновая функция – описывает зависимость амплетуды волны от координат электрона и хар-ет вероятность пребывания электрона в той или иной области пространства.
42… Строение многоэлектронных атомов. Принцип минимума энергии. Принцип Паули. Правило Хунда.
При переходе от одноэлектронного атома к многоэлектронному в дополнение к взаимодействию электрон-ядро появляется новый тип взаимодействий – электронов друг с другом. Взаимодействие любого электрона с остальными зависит от состояния каждого электрона.
Принцип минимума энергии – наиболее устойчивым состоянием системы будет такое состояние, при котором электроны заполняют атомные орбитали с низшей энергией, при этом обеспечивается мин. Потенциальной энергии системы и макс. Энергии взаимодействия электрона с ядром.
Принцип Паули – в атоме не может быть 2-ух электронов обладающих одинаковым набором всех квантовых чисел.
Правило Хунта – суммарный спин электронов в атоме стремится к максимуму.
43… Атомные орбитали. Квантовые числа: главное, орбитальное, магнитное, спиновое.
Атомная орбиталь — одноэлектронная волновая функция в сферически симметричном электрическом поле атомного ядра, задающаяся главным, орбитальным, магнитным, и спиновым квантовыми числами.
Главное квантовое число n может принимать любые целые положительные значения, начиная с единицы (n = 1,2,3, … ∞) и определяет общую энергию электрона на данной орбитали.
Орбитальное квантовое число определяет момент импульса электрона и может принимать целые значения от 0 до n — 1 (l = 0,1, …, n — 1).
Магнитное квантовое число m, характеризует ориентацию атомных орбиталей в пространстве (ml = -l … 0 … l).
Спиновое квантовое число S, характеризует собственный момент движения электрона (s=+1/2 или s=-1/2), определяет направление вращения электрона вокруг своей оси.
