- •1. Атом, изотоп, химический элемент, вещество ( простое, сложное, реальное, раствор, смесь).
- •2. Способы выражения состава раствора. Концентрация (молярная, моляльная, массовая доли).
- •3. Квантово-механическая модель атома, квантовые числа, типы атомных орбиталей.
- •4. Основные принципы заполнения Атомных Орбиталей электронами. Принцип Паули, правило Хунда.
- •5. Периодическая система элементов (псэ). Закономерности изменения радиуса атомов химических элементов и электроотрицательности в периодах и группах псэ.
- •6. Химическая связь: природа, основные виды и свойства.
- •1. Энергия связи.
- •3. Валентный угол.
- •4. Полярность.
- •5. Дипольный момент.
- •7. Валентность, степень окисления атома элемента в химическом соединении.
- •8. Ковалентная связь. Насыщаемость, направленность. Строение, структурные формулы. Св-ва веществ.
- •9. Ионная связь, ее свойства. Строение и св-ва веществ с ионной связью. Примеры веществ с ионной связью.
- •10. Металлическая связь и ее свойства. Строение и свойства веществ с металлической связью.
- •11. Типы химических превращений. Уравнения химических реакций в ионно-молекулярной форме.
- •12. Основные законы термохимии ( закон Гесса, закон Лавуазье-Лапласа) и следствия из них.
- •13. Стандартная энтальпия образ в-ва (сложного, простого). Теплов эффект хим превращения, расчет.
- •14. Стандартная энтропия вещества (простого, сложного). Расчет изменения энтропии в химической реакции.
- •6 Частиц (6 ионов):
- •15. Опр направления хим р-ции по термодинамич ф-циям состояния. Энергия Гиббса, расчет.
- •16. Обратимые реакции. Хим равновесие. Закон действующих масс. Константы равновесия
- •17. Равновесие диссоциации слабых к-т и основ. Константа диссоци. З-н разбавления Оствальда. Расчет рН.
- •18. Равновесие гидролиза солей. По катиону,по аниону, рН водных р-ров солей, константа гидролиза.
- •19. Пр малорастворимых соединений . Расчет р-римости соли и концентрации ионов по значению пр.
- •20. Уравнение скорости простой и сложной химической реакции. Порядок и молекулярность реакции.
- •21. Еа. Р-ии между какими частицами идут с заметной V при ну, какие р-ции требуют инициирования?
- •22. Зависимость скорости реакции от температуры ( уравнение Аррениуса, правило Вант-Гоффа).
- •23. Катализ. Гомогенный, гетерогенный и ферментативный катализ.
- •24. Комплексные соединения. Типичные комплексообразователи и лиганды. Координационное число.
- •25. Константа нестойк. Расчет концентрац ионов ко и лигандов в растворе комплексной соли по Кн.
- •26. Химические свойства комплексных солей
- •27. Растворы. Физико-хим взаимодействия в растворах. Сольватация, гидратация, ассоциация, диссоциация.
- •28. Коллигативные свойства растворов. Осмос. Закон Вант-Гоффа.
- •29. Коллигативные св-ва р-ров. Ткип и Тзамерз р-ров. Следствия из з-на Рауля. Определение состояния вещества в р-ре (электролит, неэлектролит, ассоциат) по коллгативным свойствам.
- •30. Коллоидные растворы. Дисперсные системы, классификация, области их применения.
- •31. Строение мицеллы. Правило Пескова-Фаянса. Адсорбция. Св-ва коллоидных р-ров (агрегативная и кинетическая устойчивость, седиментация, коагуляция, оптические и электрические).
- •32. Методы получения и разрушения коллоидных систем.
- •33. Окислительно-восстановительные сис. Степ окисл. Процессы ок и вос. Пр типичных ок и восстанов.
- •34. Ур-ия ок-восст р-ций. Метод электронного баланса. Пр влияния среды (рН) на ок- восст превращ.
- •35. Окислительно-восстановительная двойственность на примере н2о2 и NaNo2.
- •36. Электрохимические процессы. Двойной электрич слой на границе электрод/электролит.
- •37. Типы электродов (I рода (Ме и НеМе); газовые электроды (водородный и кислородный); ок-вос электроды). Ур-ние Нернста для электрод потенциала. Стандарт водородный электрод как.
- •38. Гальванические элементы. Электродвижущая сила (эдс) гальванических элементов. Токообразующая реакция гальванических элементов.
- •39. Обратимые гальванические эл-ты (аккумуляторы), необратимые гальванические эл-ты (сухие элементы).
- •1) Прямой процесс(работа, т.Е. Получение эл. Тока )
- •2) Обратный процесс(приобретение эл. Энергии (зарядка))
- •2) Обратный процесс
- •40. Коррозия. Хим и электрохим коррозия Ме. Электрохим коррозия Ме в кислой среде ( Fe/Zn и Fe/Sn).
- •41. Методы защиты от коррозии. Защитные покрытия, катодная и протекторная защита от коррозии.
- •42. Лантаноиды (4-f элементы). Особенность электронного строения. Лантаноидное сжатие. Лантаноиды с переменной степенью окисления.
- •43. Свойства соединений церия и европия в разных степенях окисления. Получение и области применения.
- •44. Актиноиды (5-f элементы). Особенность электронного строения. Актиноидное сжатие. Изменение степени окисления в ряду актиноидов.
- •45. Свойства урана и его соединений в разных степенях окисления. Получение и области применения.
- •1.Свойства гидроксидов:
- •46. Свойства тория и его соединений. Получение и области применения.
- •47. Радиоактивность и радиохим превращения веществ. Стабильные и нестабильные изотопы. Применение.
- •48. Основные виды ионизирующего излучения.
- •49. Реакции радиоактивного распада. Период полураспада. Ядерные реакции.
- •50. Современные методы разделения и очистки веществ на примерах очистки воды, воздуха, извлечения и разделения актиноидов. Химические методы, ионообменная сорбция, экстракция.
46. Свойства тория и его соединений. Получение и области применения.
Свойства тория.
Th [ ] 5f1 [ ] 6d1 7s2, +3, аналог R
Th […6S26P6 ] 5f0 [ ] 6d2 7s2 +4, аналог 4d: Zr, Hf.
Th + O2 ThO2. Взрыв.
Получение: Тh3(РO4)4 + 12NaOH (t) 3Th(OH)4 + 4Na3РO4.
Физич. св-ва: Период полураспада 1,4*1010лет; t плавления 1750; плотность 11,7
Химич. св-ва: Явл. активным Ме, активным восстановителем. По активности уступают только щелочным, щелочно-земельным и Ln ; Е0 Th4+/Th = -1,9В
а) Взаимодействует практически со всеми неметаллами:
Th + O2 = Th O2
Th – порошок самовозгорающийся
б) С щелочами не реагирует
Th+ NаOH
в) С катализаторами окислителями (H2SO4 конц; HNO3)
3Th0+ 16HN+5O3 3Th+4 (NO3)4 + 4N+2O+8H2O
г) Th+F2 ThF4 t пл= -1,9В
Свойства соединений тория Th^(+4). Проявляет только основн. св-ва. Реагирует только с кислотами:
ThO2+ HNO3 Th(NO3)4 + H2O ; Th(N03)4 + 4NaOH Th(OH)4| + 4NaN03.
Th(OH)4 + 4HCI ThCl4 + 4H20. ; Тh(NО3)4 + 2Na2C03 + H2O ТhОСО3 + 4NANO3 + Н2О + CO2.
ThOCO3 + 3Na2C03 + H2O Na4[Тh(СО3)4] + 2NaOH. Kч=8.
Th(N03)4 + 2(NH4)C2O4 Th(C204)2 + 4NH4NO3. ; Th(C204)2 + 2(NH4)C204 (NH4)4[Th(C204)4] K4=8.
ThF4 + 4Na2C03 Na4[Th(CO3)4] + 4NaF. ; Th(N03)4 + K4[Fe(CN)6] Th[Fe(CN)6] + 4KN03.
Th[Fe(CN)6] + 4Na2C03 Na4[Th(C03)4] + Na4[Fe(CN)6].
Гидролиз:
Th(NO3)4 +2H2O Th(OH)2(NO3)2+ 2HNO3 ; Th(NO3)2+ NaCO3 ThCO3 осадок +2NaNO3
Получение тория.
Th(C2O4)2 (t) ThO2 + 2CO + 2CO2.
Металлотермия: Th02 + Ca (t) Th3 + CaO. Без воды. Иначе взрыв.
Электролиз расплава: K2[ThFe6](KCI, NaCI) Th3 (порошкообразный) + Cl2.
Иодидное рафинирование (газотранспортные реакции):
ThI4 (Дельта, ну треугольничик такой)Th + 2I2. Th02/Th3N4/ThC+l2 не идёт.
1 зона: Th + I2 (t) Thl4 (газ) -> во вторую зону.
2 зона: Thl4 (t) Th (чистый) + 2I2.
47. Радиоактивность и радиохим превращения веществ. Стабильные и нестабильные изотопы. Применение.
Радиоактивность и радиохимические превращения.
Радиохимия изучает химию ядерных превращений и сопутствующие им физико-химические процессы, а также химию радиоактивных вещ-в.
Радиоактивность – это самопроизвольное испускания, ионизирующего излучения каким-либо элементом в результате распада его атомного ядра.
Радиохимические превращения - тоже самое, что ядернохимические реакции превращения =реакции в принципе. Ядерные реакции - те реакции, в которых ядра одних хим.эл-тов превращаются в ядра других хим. эл-тов под воздействием излучения.
Изотопы – это атомы одного и того же химического элемента, различающиеся массовыми числами из-за разного содержания нейтронов в ядре атома.
Изотопы бывают:
1.Стабильные – это те изотопы, кот. Не подвергаются радиоактивному распаду и в природе сохраняются сколь угодно долго;
2.Нестабильные(радиоизотопы, радионуклиды) – это те изотопы, кот. подвергаются радиоактивному распаду, в природе их содержание постоянно уменьшается (их 1800 в природе).
Стабильность изотопа связывают со стабильностью ядра его строения. Полагают, что ядра имеют строение подобно электронным облачкам. Для ядер существуют стабильные ядерные конфигурации, как правило с четным количеством нейтронов и нечетным протонов. Применение радиоактивных изотопов для изучения диффузии в твёрдых телах. Диффузионные процессы играют чрезвычайно важную роль в ряде областей техники, в частности в металлургии. А также применяются в области медицины.
