
- •1. Атом, изотоп, химический элемент, вещество ( простое, сложное, реальное, раствор, смесь).
- •2. Способы выражения состава раствора. Концентрация (молярная, моляльная, массовая доли).
- •3. Квантово-механическая модель атома, квантовые числа, типы атомных орбиталей.
- •4. Основные принципы заполнения Атомных Орбиталей электронами. Принцип Паули, правило Хунда.
- •5. Периодическая система элементов (псэ). Закономерности изменения радиуса атомов химических элементов и электроотрицательности в периодах и группах псэ.
- •6. Химическая связь: природа, основные виды и свойства.
- •1. Энергия связи.
- •3. Валентный угол.
- •4. Полярность.
- •5. Дипольный момент.
- •7. Валентность, степень окисления атома элемента в химическом соединении.
- •8. Ковалентная связь. Насыщаемость, направленность. Строение, структурные формулы. Св-ва веществ.
- •9. Ионная связь, ее свойства. Строение и св-ва веществ с ионной связью. Примеры веществ с ионной связью.
- •10. Металлическая связь и ее свойства. Строение и свойства веществ с металлической связью.
- •11. Типы химических превращений. Уравнения химических реакций в ионно-молекулярной форме.
- •12. Основные законы термохимии ( закон Гесса, закон Лавуазье-Лапласа) и следствия из них.
- •13. Стандартная энтальпия образ в-ва (сложного, простого). Теплов эффект хим превращения, расчет.
- •14. Стандартная энтропия вещества (простого, сложного). Расчет изменения энтропии в химической реакции.
- •6 Частиц (6 ионов):
- •15. Опр направления хим р-ции по термодинамич ф-циям состояния. Энергия Гиббса, расчет.
- •16. Обратимые реакции. Хим равновесие. Закон действующих масс. Константы равновесия
- •17. Равновесие диссоциации слабых к-т и основ. Константа диссоци. З-н разбавления Оствальда. Расчет рН.
- •18. Равновесие гидролиза солей. По катиону,по аниону, рН водных р-ров солей, константа гидролиза.
- •19. Пр малорастворимых соединений . Расчет р-римости соли и концентрации ионов по значению пр.
- •20. Уравнение скорости простой и сложной химической реакции. Порядок и молекулярность реакции.
- •21. Еа. Р-ии между какими частицами идут с заметной V при ну, какие р-ции требуют инициирования?
- •22. Зависимость скорости реакции от температуры ( уравнение Аррениуса, правило Вант-Гоффа).
- •23. Катализ. Гомогенный, гетерогенный и ферментативный катализ.
- •24. Комплексные соединения. Типичные комплексообразователи и лиганды. Координационное число.
- •25. Константа нестойк. Расчет концентрац ионов ко и лигандов в растворе комплексной соли по Кн.
- •26. Химические свойства комплексных солей
- •27. Растворы. Физико-хим взаимодействия в растворах. Сольватация, гидратация, ассоциация, диссоциация.
- •28. Коллигативные свойства растворов. Осмос. Закон Вант-Гоффа.
- •29. Коллигативные св-ва р-ров. Ткип и Тзамерз р-ров. Следствия из з-на Рауля. Определение состояния вещества в р-ре (электролит, неэлектролит, ассоциат) по коллгативным свойствам.
- •30. Коллоидные растворы. Дисперсные системы, классификация, области их применения.
- •31. Строение мицеллы. Правило Пескова-Фаянса. Адсорбция. Св-ва коллоидных р-ров (агрегативная и кинетическая устойчивость, седиментация, коагуляция, оптические и электрические).
- •32. Методы получения и разрушения коллоидных систем.
- •33. Окислительно-восстановительные сис. Степ окисл. Процессы ок и вос. Пр типичных ок и восстанов.
- •34. Ур-ия ок-восст р-ций. Метод электронного баланса. Пр влияния среды (рН) на ок- восст превращ.
- •35. Окислительно-восстановительная двойственность на примере н2о2 и NaNo2.
- •36. Электрохимические процессы. Двойной электрич слой на границе электрод/электролит.
- •37. Типы электродов (I рода (Ме и НеМе); газовые электроды (водородный и кислородный); ок-вос электроды). Ур-ние Нернста для электрод потенциала. Стандарт водородный электрод как.
- •38. Гальванические элементы. Электродвижущая сила (эдс) гальванических элементов. Токообразующая реакция гальванических элементов.
- •39. Обратимые гальванические эл-ты (аккумуляторы), необратимые гальванические эл-ты (сухие элементы).
- •1) Прямой процесс(работа, т.Е. Получение эл. Тока )
- •2) Обратный процесс(приобретение эл. Энергии (зарядка))
- •2) Обратный процесс
- •40. Коррозия. Хим и электрохим коррозия Ме. Электрохим коррозия Ме в кислой среде ( Fe/Zn и Fe/Sn).
- •41. Методы защиты от коррозии. Защитные покрытия, катодная и протекторная защита от коррозии.
- •42. Лантаноиды (4-f элементы). Особенность электронного строения. Лантаноидное сжатие. Лантаноиды с переменной степенью окисления.
- •43. Свойства соединений церия и европия в разных степенях окисления. Получение и области применения.
- •44. Актиноиды (5-f элементы). Особенность электронного строения. Актиноидное сжатие. Изменение степени окисления в ряду актиноидов.
- •45. Свойства урана и его соединений в разных степенях окисления. Получение и области применения.
- •1.Свойства гидроксидов:
- •46. Свойства тория и его соединений. Получение и области применения.
- •47. Радиоактивность и радиохим превращения веществ. Стабильные и нестабильные изотопы. Применение.
- •48. Основные виды ионизирующего излучения.
- •49. Реакции радиоактивного распада. Период полураспада. Ядерные реакции.
- •50. Современные методы разделения и очистки веществ на примерах очистки воды, воздуха, извлечения и разделения актиноидов. Химические методы, ионообменная сорбция, экстракция.
30. Коллоидные растворы. Дисперсные системы, классификация, области их применения.
Коллоидные системы – это высоко дисперсные гетерогенные системы, характеризующиеся сильно развитой поверхностью раздела фаз.
Дисперсные системы (раздробленные и гетерогенные) состоят из сплошной непрерывной среды – дисперсной фазы и раздробленных частиц – дисперсной среды. Лиофильные коллоиды — коллоиды с высоким сродством ДФ и ДС. Нет чёткой границы фаз. Наиболее термодинамически устойчивы. Лиофобные коллоиды — с малым сродством ДФ и ДС. Резкая граница раздела фаз. Менее устойчивы.
Классификация дисперсных систем по агрегатным состояниям фаз. \ применение
Дисперсион-ная среда\Дисперс-ная фаза\Примеры дисперсных систем
Твердая\Твердая\Рубиновое стекло; пигментированные волокна (рис на ткани); сплавы;
Твердая\Жидкая\Жемчуг, вода в граните, вода в бетоне
Твердая\Газообразная\Газовые включ в различных твердых телах: пенобетоны, замороженные пены, пемза
Жидкая\Твердая\Суспензии, краски, пасты, золи, латексы
Жидкая\Жидкая\Эмульсии: молоко, нефть, сливочное масло, маргарин, замасливатели волокон
Жидкая\Газообразная\Пены, в том числе для пожаротушения и пенных технологий замасливания волокон,
Газообразная\Твердая\Дымы, космическая пыль, аэрозоли
Газообразная\Жидкая\Туманы, газы в момент сжижения
Газообразная\Газообразная\Коллоидная система не образуется
31. Строение мицеллы. Правило Пескова-Фаянса. Адсорбция. Св-ва коллоидных р-ров (агрегативная и кинетическая устойчивость, седиментация, коагуляция, оптические и электрические).
mAgI (ДФ) + nAgNO3 (ДС) {m[AgI]nAg+xNO3–}(n-x)+ (n-x)NO3–. Всё — мицелла, m[AgI] — ядро; nAg+xNO3– — адсорбционный слой, {m[AgI]nAg+xNO3–}(n-x)+ — гранула.
Адсорбция — процесс поглощения одного вещества поверхностью другого.
Правило Пескова-Фаянса: ядро мицеллы адсорбирует из раствора преимущественно те ионы, которые входят в кристаллическую решётку ядра (или изоморфные им) и в растворе находятся в избытке.
Устойчивость коллоидных систем — способность сохранять присущую им степень дисперсности.
Агрегативная устойчивость связана с наличием заряда одного знака у гранулы, что приводит к отталкиванию частиц и предотвращает их слипание.
Кинетическая устойчивость связана с постоянным броуновским движением частиц.
Коагуляция – укрупнение коллоидных частиц из-за частичной или полной потери электрического заряда при добавлении электролита. При полной потере заряда коагуляция приводит к разрушению коллоидной системы. Седиментация (осаждение) — выделение ДФ в виде осадка.
Оптические свойства коллоидов: Эффект Тиндаля (конус) позволяет доказать наличие коллоида. Электрические свойства коллоидов обусловлены наличием заряда у гранулы.
Электрофорез — направленное перемещение частиц в постоянном электрическом поле.
Электроосмос — перемещение ДС через полупроницаемую перегородку в постоянном электрич поле.
32. Методы получения и разрушения коллоидных систем.
Метод получения: 1) измельчение ДФ в ДС, 2) осаждение (конденсация) в результате обменных реакций, где выделяются труднорастворимые продукты.
Пример образования мицеллы: 1) AgNO3 + KI AgI + KNO3 (получение частиц ДФ размером 10-7 — 10-9 м) 2) mAgI (ДФ) + nAgNO3 (ДС) {m[AgI]nAg+xNO3–}(n-x)+ (n-x)NO3–. Всё — мицелла, m[AgI] — ядро; nAg+xNO3– — адсорбционный слой, {m[AgI]nAg+xNO3–}(n-x)+ — гранула,
(n-x)NO3– — диффузионный слой.
Разрушение комплекса. Комплекс может быть разрушен или кислотой или реагентом, который может образовать с центральным атомом труднорастворимое соединение.
[Ag(NH3)2]OH + 3HNO3 = AgNO3 + 2NH4NO3 + H2O
[Cu(NH3)4]SO4 + 4NO3 = CuSO4 + 4NH4NO3
Чтобы определить разрушится ли комплекс при добавлении реактива, дающего с с ионами комплексообразователя малорастворимые соединения, нужно рассчитать ПК и сравнить с ПР.
Для расчета ПК требуется определить концентрацию ионов комплекса по численному значению Кн. Кн – константа нестойкости, характеризует прочность комплекса. Если ПК>ПР – то комплекс может быть разрушен. Можно устроить коагуляцию, подействовав электролитом. Седиментация (осаждение) — выделение ДФ в виде осадка. Порог коагуляции (Спор) — наименьшая концентрация электролита, вызывающая коагуляцию. Cпор (Cэл * Vэл)/(Vзоля + Vэл); Cпор 1/z6, z — заряд коагулирующего иона. При коагуляции мицелл лиофильного коллоида происходит образование геля. Пример коагуляции:
.