
- •1 .Система си
- •2.Погрешность при технич. И лабораторных измерениях
- •3.Общие сведения о Температурных шкалах и ед. Измер-я t0
- •4.Физические явления используемые для измерения тем-ры.
- •5.Термометры расш-ния. Манометрические термометры.
- •6. Электрические термометры сопротивления, нсх, осн-ые хар-ки
- •7. Термоэлектрич терм-ры. Осн. Св-ва термоэл-ой цепи.
- •8.Стандарт. Термопары, термоэл-ые удлиняющие провода. Методы измерения термо-эдс
- •9. Пирометры излучения
- •10.Единицы и методы измерения давления и разряжения.
- •11.Манометры с упругими чувствит. Эл. Основные сведения об установке и поверке манометров.
- •12. Манометры идифманометры с тензопреобразователями. Преобразоват. Давления.
- •13. Измерение уровня жидких сред
- •14. Единицы и методы измерения расхода и кол-ва
- •15. Расходомеры переменного перепада (дроссельные-др)
- •16.Электромагнитные расходомеры(эм)
- •17. Ультразвуковые расходомеры (ур)
- •18. Вихревые расходомеры (вр)
- •19. Тахометрические расходомеры (тр)
- •20. Тепловая энергия. Принципы измерения тепл. Эн.
- •21. Измерение тепловой энергии переданной сетевой водой. Открытая и закрытая схема измерения тепловой энергии.
- •22.Измерение тепловой энергии переданной водяным паром.
- •23. Классификация автоматических систем.
- •24 .Управление по разомкнутому циклу
- •25.Статическое регулирование.
- •26.Регуляторы системы автоматики
- •27. Статические и динамические характеристики систем регулирования
- •28.Основы автоматического регулирования
- •29.Устойчивость и качество регулирования
- •30.Интегральные регуляторы (и-регуляторы)
- •31.Пропорциональные регуляторы (п-регуляторы)
- •34. Требования к автоматизация ку. Автоматика безопасности
- •35 Защита паровых котлов
- •36. Защита водогрейных котлов
- •37.Регулирование нагрузки паровых котлов “по теплу”
- •38. Регулятор «топливо-воздух» для паровых котлов
- •39. Регулятор «разряжения в топке котла»
- •40. Регулятор «уровня воды в барабане»
- •41.Регулятор «температуры пара»
- •42.Регулятор «непрерывной продувки»
- •43. Системы асу тп в энергетики
- •44.Автоматическое регулирование вспомогательного оборудования ку
- •45.Автоматическое регулирование роу
- •46. Автоматическое регулирование водоподготовки
- •48.Технологическая сигнализация. Требования к ней.
- •49. Датчики системы автоматики (дса).
- •50.Автоматизация и теплотехнический контроль на итп и цтп.
- •51.Регулирование гвс.
- •52.Регулирование подачи тепловой энергии на отопление (независимая схема)
- •53.Регулирование тепловой энергии на отопление в зависимой схеме
- •54Автоматизация и теплотехнический контроль на итп и цтп
- •Экзаменационные вопросы по курсу тти и оар 2011 – 2012 учебный год.
30.Интегральные регуляторы (и-регуляторы)
Интегральный закон регулирования хар-ся тем, что любому положению регулируемого органа, т.е. любой нагрузке соответствует заданное значение регулируемой величины. Если в автомат.системе с таким регулятором от заданного значения регулирующий орган будет перемещаться до тех пор пока она не вернется к заданному значению. Этот закон регулирования описывается уравнением
Замкнутая система автоматического регулятора с замкнутым регулированием является автоматическим (модель астатического регулятора – пример замкнутого регулятора)
Положительной особенностью такого вида регулирования является то, что регулирующий орган может занимать любые положения в пределах своего рода – при поддержании заданной величины на заданном уровне
Недостатком этого вида регулирования явл. Замедленное действие. Часто в лит-ре И-регуляторы наз.астатичечкими. Астатические регуляторы склонны к автоколебаниям и используются для регулирования объектов с высокой степенью самовыравнивания. Обычно все регуляторы прямого действия работают па астотическому принципу.
31.Пропорциональные регуляторы (п-регуляторы)
В П-регуляторе отклонение регулируемой величины от заданного значения вызывает пропорциональное по значению и скорости перемещения регулирующего органа. Эти регуляторы имеют статическую систему регулирования (см. стат.регулирование)
Основное свойство этих регуляторов заключается в том, что перемещение регулирующего органа у них пропорционально отклонению регулируемой величины от заданного значения:
Хр= -Kр ∆y.
По своим динамическим характеристикам П-регуляторы напоминают усилители, поэтому очень склонны к колебательному режиму регулирования. Поэтому в П-регуляторах обязательно наличие жесткой обратной связи (отрицательной), действие которой зависит от регулируемой величины и не зависит от времени…
Но маленькая точность регулирования потомучто они работают по статическому принципу и имеют статическую ошибку. П- регуляторы в лит-ре наз. статическими регуляторами.
32.ПИ-РЕГУЛЯТОРЫ (ПРОПОРЦИОНАЛЬНО-ИНТЕГРАЛЬНЫЕ)
В этом случае перемещение регулирующего органа производится по сумме воздействий, пропорциональных отклонению регулируемой величины от заданного значения и интегралу по времени от этого отклонения:
Здесь: Ти – постоянная времени, характеризующая степень воздействия интегральной составляющей; обычно эту постоянную называют временем изодрома ПИ – регулятора.
Таким образом, пропорционально-интегральный регулятор совмещает в себе свойства статического (П-) регулятора, благодаря чему достигается быстродействие и обеспечиваются устойчивость регулирования, а также свойства астатического (И-) регулятора, что позволяет исключить статическую ошибку (неравномерность) регулирования. Благодаря этим свойствам ПИ-регуляторы находят самое широкое применение при автоматизации большинства промышленных объектов.
ПИ-регуляторы выполняются по схеме с обратной связью. Однако связь эта делается не жесткой, как у П-регулятора, а упругой (исчезающей). Механизм упругой обратной связи носит название изодрома, а сам регулятор называется в этом случае изодромным.
33.ПИД-регуляторы (пропорционально –интегральные -дифференциальные)
У этих регуляторов перемещение регулирующего органа дополнительно к интегральному воздействию оказывает влияние скорости изменения регулирующей величины, кот.представляет собой первую производную по времени.
В зависимости от дифференциальной составляющей эти регуляторы бывают по первой производной (скорости) и по второй (ускорение)
Введение первой производной или второй производной в закон регулирования вынуждает регулирующий орган перемещаться с некоторым опережением, возрастающим по мере увеличения скорости или ускорения регулируемой величины. Скорость изменения регулир.величины и уменьшение ее воздействия. Тогда поэтому возникает большая точность и быстродействие регулятора. Поэтому ПИД- регуляторы бываят только электронные косвенного действия (ракетостроение, энергетика).
Эта закономерность выражается уравнением:
Постоянная времени Тпр носит название “времени предварения” и характеризует степень участия производной d∆y/dt в законе регулирования. При Тпр = 0 регулятор выполняет закон ПИ – регулирования.