
- •Матрицы: основные понятия, алгебраические операции и их св-ва, ранг матрицы, элементарные преобразования.
- •Определители второго и третьего, n-го порядка, св-ва определителей, вычисление обратной матрицы.
- •Свойства определителей:
- •Вычисление обратной матрицы.
- •Системы линейных уравнений: основные понятия, методы решения: матричный, Крамера, Гаусса.
- •Методы решения:
- •10. Метод Гаусса решения слу:
- •Основные понятия:
- •Произведения векторов:
- •Прямая на плоскости: основные уравнения, взаимное расположение двух прямых. Формулы расстояния от точки до прямой, длины отрезка.
- •Кривые второго порядка: эллипс, гипербола, парабола: определение, канонические уравнения, свойства, способ построения.
- •Кривые второго порядка:
- •Эллипс, гипербола, парабола, окружность:
- •Полярная система координат.
- •Пределы: основные понятия и их свойства.
- •Бесконечно большие и бесконечно малые функции, сравнение бесконечно малых, связь между бесконечно малыми и бесконечно большими функциями.
- •Замечательные пределы.
- •Первый замечательный предел
- •Эквивалентные бесконечно малые функции, основные эквивалентности.
- •Непрерывность функции, классификация точек разрыва. Св-ва функций, непрерывных на отрезке.
- •Асимптоты графика функций.
- •Приложение производной для раскрытия неопределенностей в пределах.
- •Формула Тейлора. Разложение в ряд функций.
- •Ф ункции нескольких переменных (фнп): определение, св-ва, график, линии и поверхности уровня.
- •Предел и непрерывность фнп. Дифференцируемость фнп.
- •1.1.2 Предел функции в точке
- •1.1.3 Непрерывность функции двух переменных в точке
- •1.1.5 Дифференцируемость функции двух переменных, дифференциал
- •Классификация областей.
- •Производная и дифференциал фнп: частные производные, геометрический смысл (уравнение нормали и касательной плоскости).
- •Производная сложной и неявной функции, полная производная.
- •Частные производные и дифференциал высших порядков фнп.
- •Экстремум функции нескольких переменных.
- •Скалярное поле: производная по направлению, градиент, связь между ними; физический смысл, св-ва градиента.
Замечательные пределы.
Замеча́тельныепреде́лы — термин, использующийся в советских и российских учебниках по математическому анализу для обозначения некоторых широко известных математических тождеств со взятием предела. Особенно известны:
Первый замечательный предел:
Второй замечательный предел:
Первый замечательный предел
Доказательство
Рассмотрим односторонние
пределы
и
и
докажем, что они равны 1.
Пусть
.
Отложим этот угол на единичной окружности
(R =
1).
Точка K — точка пересечения луча с окружностью, а точка L — с касательной к единичной окружности в точке (1;0). Точка H — проекция точки K на ось OX.
Следствия
Док-во следствий.
Второй замечательный предел.
или
Докажем
вначале теорему для случая
последовательности
По
формуле бинома Ньютона:
Полагая
,
получим:
(1)
Из
данного равенства (1) следует, что с
увеличением n число положительных
слагаемых в правой части увеличивается.
Кроме того, при увеличении n число
убывает,
поэтому величины
возрастают.
Поэтому последовательность
— возрастающая,
при этом
(2).
Покажем, что она ограничена. Заменим каждую скобку в правой части равенства на единицу, правая часть увеличится, получим неравенство
Усилим полученное неравенство, заменим 3,4,5, …, стоящие в знаменателях дробей, числом 2:
.
Сумму в скобке найдём по формуле суммы членов геометрической прогрессии:
.
Поэтому
(3).
Итак,
последовательность ограничена сверху,
при этом
выполняются
неравенства (2) и (3):
.
Следовательно,
на основании теоремы Вейерштрасса
(критерий сходимости последовательности)
последовательность
монотонно
возрастает и ограниченна, значит имеет
предел, обозначаемый буквой e.
Т.е.
Следствия
для
,
Доказательство следствий.
Эквивалентные бесконечно малые функции, основные эквивалентности.
Эквивалентные величины
Определение. Если
то бесконечно малые величины α и β называются эквивалентными
Очевидно, что эквивалентные величины являются частным случаем бесконечно малых величин одного порядка малости.
При
справедливы следующие соотношения эквивалентности (как следствия из так называемых замечательных пределов):
где a > 0;
поэтому используют выражение:
где Теорема
Предел частного (отношения) двух бесконечно малых величин не изменится, если одну из них (или обе) заменить эквивалентной величиной.Данная теорема имеет прикладное значение при нахождении пределов.
Непрерывность функции, классификация точек разрыва. Св-ва функций, непрерывных на отрезке.
Точки разрыва
Если попытаться построить отрицание свойства непрерывности функции в точке (предельной для области определения), то получится следующее. Существует такая окрестность значения функции в рассматриваемой точке, что сколь близко мы не подходили бы к данной точке, всегда можно будет найти точку, значение в которой окажется за пределами заданной окрестности.
В
этом случае говорят, что функция f терпит
разрыв в точке a.
Возможны два варианта:
либо предел функции существует, но он не совпадает со значением функции в данной точке:
тогда
точка a называется точкой
устранимого разрыва функции f (в комплексном
анализе — устранимая особая
точка). Положив
можно
добиться непрерывности функции в этой
точке. Такое изменение значения функции
в точке, превращающее функцию в непрерывную
в этой точке, называется доопределением
по непрерывности.
либо предела функции в данной точке не существует. В этом случае для числовой функции, заданной навещественной прямой (или её подмножестве), возможно существование односторонних пределов. Отсюда возникает классификация точек (неустранимого) разрыва:
если оба односторонних предела существуют и конечны, но хотя бы один из них отличен от значения функции в данной точке, то такую точку называют точкой разрыва первого рода;
если хотя бы один из односторонних пределов не существует или не является конечной величиной, то такую точку называют точкой разрыва второго рода.
Точка, в которой функция не определена, будет точкой разрыва функции лишь при условии, если функция определена, хотя бы с одной стороны вблизи этой точки.
Дифференциальное исчисление функций одной переменной
производная функции: определение, геометрический и механический смысл, св-ва.
св-ва производных
таблица производных элементарных функций
дифференцируемость и дифференциал функции.
производная неявной, параметрической, обратной функции, логарифмическое дифференцирование.
основные теоремы дифференциального исчисления.
производная и дифференциал высших порядков.
применение производной для исследования св-в функций: определение интервалов монотонности, выпуклости, нахождение точек экстремума и перегиба.
Определение 1. Функция f(x) называется возрастающей в интервале (a,b), если при возрастании аргумента x в этом интервале соответствующие значения функции f(x) также возрастают, т.е. если f(x2) > f(x1) при x2 > x1.
Рис.1 (а) |
Рис.1 (б) |
Из этого определения следует, что у возрастающей в интервале (a,b) функции f(x) в любой точке этого интервала приращения x и yимеют одинаковые знаки. График возрастающей функции показан на рисунке1(а). Если из неравенства x2 > x1 вытекает нестрогое неравенство f (x2) f (x1), то функция f (x) называется неубывающей в интервале (a, b ). Пример такой функции показан на рисунке 2(а). На интервале [ x0 , x1 ] она сохраняет постоянное значение C Определение 2. Функция f (x) называетсяубывающей в интервале ( a, b ) если при возрастании аргумента x в этом интервале соответствующие значения функции f (x)убывают, т.е. если f(x2) < f(x1) при x2 > x1.
Из этого определения следует, что у убывающей в интервале ( a, b ) функции f (x) в любой точке этого интервала приращения x и yимеют разные знаки. График убывающей функции показан на рисунке 1(б).
Теорема 1.Дифференцируемая и возрастающая в интервале ( a, b )функция f (x) имеет во всех точках этого интервала неотрицательную производную. Теорема 2.Дифференцируемая и убывающая в интервале( a, b ) функция f (x)имеет во всех точках этого интервала неположительную производную.
Определение 3. Максимумом функции f (x) называется такое значение f (x0) этой функции, которое не меньше всех значений функции f (x) в точках x, достаточно близких к точке x0 , т.е. в точках x,
принадлежащих некоторой достаточно малой окрестности точки x0 .
Определение 4. Минимумом функции f (x) называется такое значение f (x0) этой функции, которое не больше всех значений функции f (x) в точках x, достаточно близких к точке x0 , т.е. в точках x, принадлежащих некоторой
достаточно малой окрестности точки x0 .
Функция f (x) может иметь несколько экстремумов внутри интервала [ a, b ], причем может оказаться, что какой-нибудь минимум будет больше какого-нибудь максимума. Таким образом, наибольшее значение функции f (x) на интервале [ a, b ] - это наибольший из экстремумов функции внутри этого интервала и наибольшее из значений функции на концах интервала.Аналогично наименьшее значение функции f (x) на интервале [ a, b ] - это наименьший из экстремумов функции внутри этого интервала и наименьшее из значений функции на концах интервала.Точки A, C, в которых функция переходит от возрастания к убыванию, так же, как и точки B, D, в которых функция переходит от убывания к возрастанию, называются точками поворота или критическими точками кривой y = f (x), а их абциссы - критическими значениями аргумента x
Теорема 3 (необходимый признак экстремума). Если функция f (x) имеет в точке x0 экстремум, то ее производная в данной точке или равна нулю или не существует. Но функция f (x) может иметь экстремумы и в тех точках x0, в которых ее производная не существует. Например функция y = | x | в точкеx0 = 0 не дифференцируема, но достигает минимума. Точки такого типа называют угловыми. В них кривая не имеет определенной касательной.
Правило нахождения экстремума
1°. Чтобы найти экстремум функции, надо:
1) найти производную данной функции;
2) приравнять производную нулю и решить полученное уравнение; из полученных корней отобрать действительные и расположить их (для удобства) по их величине от меньшего к большему; в том случае, когда все корни оказываются мнимыми, данная функция не имеет экстремума;
3) определить знак производной в каждом из промежутков, отграниченных стационарными точками ( стационарными точками называют точки в которых производная равна 0);
4) если производная положительна в промежутке, лежащем слева от данной стационарной точки, и отрицательна в промежутке, лежащем справа от нес, то данная точка есть точка максимума функции, если же производная отрицательна слева и положительна справа от данной стационарной точки, то данная точка есть точка минимума функции; если производная имеет один и тот же знак как слева, так и справа от стационарной тонки, то в этой точке нет ни максимума, ни минимума, функции;
5) заменить в данном выражении функции аргумент значением, которое дает максимум или минимум функции; получим значение соответственно максимума или минимума функции.
Если функция имеет точки разрыва, то эти точки должны быть включены в число стационарных точек, разбивающих Ох на промежутки, в которых определяется знак производной.
Найти: -обл. определения ф-ции
-точки разрыва и интервалы, где ф-цияявл-ся непрерывной
-поведение ф-ции в окрестностях точки разрыва, вертикальной асимптоты
-т. пересечения графика с осями координат
-симметрия графика (чет./нечет):
f(-x)=x симметрична относительно осей
f(-x)=-x симметрична относительно О(0,0)
-периодичность
-интервалы монотонности
-точки экстремума
-наибольшее и наименьшее значение
-выпуклость, вогнутость
-точки перегиба
-поведение ф-ции в безконечности, наклонная и горизонтальные асимптоты
-нанесение на график.