
- •Матрицы: основные понятия, алгебраические операции и их св-ва, ранг матрицы, элементарные преобразования.
- •Определители второго и третьего, n-го порядка, св-ва определителей, вычисление обратной матрицы.
- •Свойства определителей:
- •Вычисление обратной матрицы.
- •Системы линейных уравнений: основные понятия, методы решения: матричный, Крамера, Гаусса.
- •Методы решения:
- •10. Метод Гаусса решения слу:
- •Основные понятия:
- •Произведения векторов:
- •Прямая на плоскости: основные уравнения, взаимное расположение двух прямых. Формулы расстояния от точки до прямой, длины отрезка.
- •Кривые второго порядка: эллипс, гипербола, парабола: определение, канонические уравнения, свойства, способ построения.
- •Кривые второго порядка:
- •Эллипс, гипербола, парабола, окружность:
- •Полярная система координат.
- •Пределы: основные понятия и их свойства.
- •Бесконечно большие и бесконечно малые функции, сравнение бесконечно малых, связь между бесконечно малыми и бесконечно большими функциями.
- •Замечательные пределы.
- •Первый замечательный предел
- •Эквивалентные бесконечно малые функции, основные эквивалентности.
- •Непрерывность функции, классификация точек разрыва. Св-ва функций, непрерывных на отрезке.
- •Асимптоты графика функций.
- •Приложение производной для раскрытия неопределенностей в пределах.
- •Формула Тейлора. Разложение в ряд функций.
- •Ф ункции нескольких переменных (фнп): определение, св-ва, график, линии и поверхности уровня.
- •Предел и непрерывность фнп. Дифференцируемость фнп.
- •1.1.2 Предел функции в точке
- •1.1.3 Непрерывность функции двух переменных в точке
- •1.1.5 Дифференцируемость функции двух переменных, дифференциал
- •Классификация областей.
- •Производная и дифференциал фнп: частные производные, геометрический смысл (уравнение нормали и касательной плоскости).
- •Производная сложной и неявной функции, полная производная.
- •Частные производные и дифференциал высших порядков фнп.
- •Экстремум функции нескольких переменных.
- •Скалярное поле: производная по направлению, градиент, связь между ними; физический смысл, св-ва градиента.
Пределы: основные понятия и их свойства.
Число
называется пределом
числовой последовательности
,
если последовательность
является
бесконечно малой, т. е. все её элементы,
начиная с некоторого, по модулю меньше
любого заранее взятого положительного
числа.
В
случае, если у числовой последовательности
существует предел в виде вещественного
числа
,
её называют сходящейся к
этому числу. В противном случае,
последовательность называют расходящейся.
Если к тому же она неограниченна, то её
предел полагают равным бесконечности.
Кроме того, если все элементы неограниченной последовательности, начиная с некоторого номера, имеют положительный знак, то говорят, что предел такой последовательности равен плюс бесконечности.
Если же элементы неограниченной последовательности, начиная с некоторого номера, имеют отрицательный знак, то говорят, что предел такой последовательности равен минус бесконечности.
Арифметические
свойства
Оператор взятия предела числовой последовательности является линейным, т. е. проявляет два свойства линейных отображений.
Аддитивность. Предел суммы числовых последовательностей есть сумма их пределов, если каждый из них существует.
Однородность. Константу можно выносить из-под знака предела.
Предел произведения числовых последовательностей факторизуется на произведение пределов, если каждый из них существует.
Предел отношения числовых последовательностей есть отношение их пределов, если эти пределы существуют и последовательность-делитель не является бесконечно малой.
Свойства сохранения порядка
Если все элементы сходящейся последовательности, начиная с некоторого номера, не превышают некоторого числа, то и предел этой последовательности также не превышает этого числа.
Если некоторое число не превышает все элементы сходящейся последовательности, начиная с некоторого номера, то оно также не превышает и предела этой последовательности.
Если некоторое число строго превышает все элементы сходящейся последовательности, начиная с некоторого номера, то предел этой последовательности не превышает этого числа.
Если все элементы сходящейся последовательности, начиная с некоторого номера, строго превышают некоторое число, то это число не превышает предела этой последовательности.
Если, начиная с некоторого номера, все элементы одной сходящейся последовательности не превышают соответствующих элементов другой сходящейся последовательности, то и предел первой последовательности не превышает предела второй.
Для числовых последовательностей справедлива теорема о двух милиционерах (принцип двустороннего ограничения).
Другие свойства
Сходящаяся числовая последовательность имеет только один предел.
Замкнутость. Если все элементы сходящейся числовой последовательности лежат на некотором отрезке, то на этом же отрезке лежит и её предел.
Предел последовательности из одного и того же числа равен этому числу.
Замена или удаление конечного числа элементов в сходящейся числовой последовательности не влияет на её предел.
У возрастающей ограниченной сверху последовательности есть предел. То же верно для убывающей ограниченной снизу последовательности.
Имеет место теорема Штольца.
Если у последовательности xn существует предел, то последовательность средних арифметических
имеет тот же предел (следствие из теоремы Штольца).
Если у последовательности чисел существует предел
, и если задана функция
, определенная для каждого
и непрерывная в точке , то