
- •Матрицы: основные понятия, алгебраические операции и их св-ва, ранг матрицы, элементарные преобразования.
- •Определители второго и третьего, n-го порядка, св-ва определителей, вычисление обратной матрицы.
- •Свойства определителей:
- •Вычисление обратной матрицы.
- •Системы линейных уравнений: основные понятия, методы решения: матричный, Крамера, Гаусса.
- •Методы решения:
- •10. Метод Гаусса решения слу:
- •Основные понятия:
- •Произведения векторов:
- •Прямая на плоскости: основные уравнения, взаимное расположение двух прямых. Формулы расстояния от точки до прямой, длины отрезка.
- •Кривые второго порядка: эллипс, гипербола, парабола: определение, канонические уравнения, свойства, способ построения.
- •Кривые второго порядка:
- •Эллипс, гипербола, парабола, окружность:
- •Полярная система координат.
- •Пределы: основные понятия и их свойства.
- •Бесконечно большие и бесконечно малые функции, сравнение бесконечно малых, связь между бесконечно малыми и бесконечно большими функциями.
- •Замечательные пределы.
- •Первый замечательный предел
- •Эквивалентные бесконечно малые функции, основные эквивалентности.
- •Непрерывность функции, классификация точек разрыва. Св-ва функций, непрерывных на отрезке.
- •Асимптоты графика функций.
- •Приложение производной для раскрытия неопределенностей в пределах.
- •Формула Тейлора. Разложение в ряд функций.
- •Ф ункции нескольких переменных (фнп): определение, св-ва, график, линии и поверхности уровня.
- •Предел и непрерывность фнп. Дифференцируемость фнп.
- •1.1.2 Предел функции в точке
- •1.1.3 Непрерывность функции двух переменных в точке
- •1.1.5 Дифференцируемость функции двух переменных, дифференциал
- •Классификация областей.
- •Производная и дифференциал фнп: частные производные, геометрический смысл (уравнение нормали и касательной плоскости).
- •Производная сложной и неявной функции, полная производная.
- •Частные производные и дифференциал высших порядков фнп.
- •Экстремум функции нескольких переменных.
- •Скалярное поле: производная по направлению, градиент, связь между ними; физический смысл, св-ва градиента.
Произведения векторов:
Скалярное произведение векторов и его свойства:
Скалярным
произведением двух ненулевых векторов
называется число,
равное
произведению этих векторов на косинус
угла между ними.
СП равно 0 тогда и только тогда, когда векторы взаимно перпендикулярны
Векторное произведение векторов и его свойства:
Три некомпланарных вектора образуют правую тройку если с конца третьего поворот от первого вектора ко второму совершается против часовой стрелки. Если по часовой – то левую.
Векторным
произведением
вектора
на вектор
называется
вектор
,
который:
Перпендикулярен векторам и .
Имеет длину, численно равную площади параллелограмма, образованного на векторах и .
,
где
Векторы , и образуют правую тройку векторов.
С
войства:
Смешанное произведение векторов и его свойства:
Смешанное
произведение записывают в виде:
.
Смысл смешенного произведения: сначала два вектора векторно перемножают, а затем полученный скалярно перемножают с третьим вектором. Смешанное произведение представляет собой число – число. Результат смешанного произведения – объем параллелепипеда, образованного векторами.
Свойства.
Смешанное произведение не меняется при циклической перестановке сомножителей:
Смешанное произведение не изменится при перемене местами векторного и скалярного произведения.
Смешанное произведение меняет знак при перемене мест любых двух векторов-сомножителей.
Смешанное произведение трех ненулевых векторов равно нулю тогда и только тогда, когда они компланарны.
Три вектора называются компланарными, если
результат смешанного произведения равен нулю.
Прямая на плоскости: основные уравнения, взаимное расположение двух прямых. Формулы расстояния от точки до прямой, длины отрезка.
Уравнение прямой, через угловой коэффициентy = k*x+z, где k-угловой коэффициент.
K=tgɥ(ФИ) ɥ-угол между прямой и положительным направлением оси Ox. Z – отрезок, который отсекает прямая от оси Oy.
Общее уравнение прямой имеет вид:
Общее уравнение прямой линии на плоскости в декартовых координатах:
При C = 0 прямая проходит через начало координат. Также уравнение можно переписать в виде :
Общее уравнение прямой в отрезках:
A*x + B*y + C=0,
Уравнение прямой проходящей через две заданные точки:
или в общем виде
Уравнение прямой проходящей M0 с заданным угловым коэффициентом k:
(y-y0) = k(x-x0), если L1IIL2, то k1=k2, если L1⊥L2, то k1*k2=-1
Расстояние от точки до прямой:
Где L: Ax+By+C=0, а x0и y0–координаты точки.
Взаимное расположение двух прямых:
L1IIL2, то k1=k2,
L1⊥L2, то k1*k2=-1, А1А2 + В1В2 = 0,
L1∩ L2, α = (L1˄ L2),
Прямая и плоскость в пространстве: основные уравнения, взаимное расположение двух прямых, двух плоскостей, прямой и плоскости.
Взаимное расположение двух прямых:
L1IIL2, то k1=k2,
L1⊥L2, то k1*k2=-1, А1А2 + В1В2 = 0,
L1∩ L2, α = (L1˄ L2),
Взаимное расположение двух плоскостей:
Две плоскости не имеют общих точек, и , в таком случае, они называются параллельными (αIIβ).
Две плоскости имеют хотя бы одну общую точку, и в таком случае они называются пересекающимися. Если две плоскости имеют общую точку, то они имеют общую прямую, на которой лежат обе общие точки этих плоскостей (аксиома).
Взаимное расположение прямой и плоскости:
Прямая может лежать в данной плоскости.
Прямая может пересекать данную плоскость в одной точке.
Прямая может быть параллельна плоскости.
Основные уравнения прямой и плоскости в пространстве:
Всякое уравнение первой степени относительно координат x, y, z
Ax + By + Cz +D = 0 (3.1)
задает плоскость, и наоборот: всякая плоскость может быть представлена уравнением (3.1), которое называется уравнением плоскости.
Вектор n (A, B, C ), ортогональный плоскости, называется нормальным вектором плоскости. В уравнении (3.1) коэффициенты A, B, C одновременно не равны 0.
Особые случаи уравнения (3.1):
1. D = 0, Ax+By+Cz = 0 - плоскость проходит через начало координат.
2. C = 0, Ax+By+D = 0 - плоскость параллельна оси Oz.
3. C = D = 0, Ax +By = 0 - плоскость проходит через ось Oz.
4. B = C = 0, Ax + D = 0 - плоскость параллельна плоскости Oyz.
Уравнения координатных плоскостей: x = 0, y = 0, z = 0.
Прямая в пространстве может быть задана:
1) как линия пересечения двух плоскостей,т.е. системой уравнений:
A1 x + B1 y + C1 z + D1 = 0, A2 x + B2 y + C2 z + D2 = 0; (3.2)
2) двумя своими точками M1(x1, y1, z1) и M2(x2, y2, z2), тогда прямая, через них проходящая, задается уравнениями:
=
;
(3.3)
3) точкой M1(x1, y1, z1), ей принадлежащей, и вектором a (m, n, р), ей коллинеарным. Тогда прямая определяется уравнениями:
.
(3.4)
Уравнения (3.4) называются каноническими уравнениями прямой.
Вектор a называется направляющим вектором прямой.
Параметрические уравнения прямой получим, приравняв каждое из отношений (3.4) параметру t:
x = x1 +mt, y = y1 + nt, z = z1 + рt. (3.5)
Решая систему (3.2) как систему линейных уравнений относительно неизвестных x и y, приходим к уравнениям прямой в проекциях или к приведенным уравнениям прямой:
x = mz + a, y = nz + b. (3.6)
От уравнений (3.6) можно перейти к каноническим уравнениям, находя z из каждого уравнения и приравнивая полученные значения:
.
От общих уравнений (3.2) можно переходить к каноническим и другим способом, если найти какую-либо точку этой прямой и ее направляющий вектор n = [n1, n2], где n1(A1, B1, C1) и n2(A2, B2, C2) - нормальные векторы заданных плоскостей. Если один из знаменателей m, n или р в уравнениях (3.4) окажется равным нулю, то числитель соответствующей дроби надо положить равным нулю, т.е. система
равносильна
системе
;
такая прямая перпендикулярна к оси Ох.
Система
равносильна
системе x = x1, y
= y1;
прямая параллельна оси Oz.