
- •1.1 Атомно-молекулярное учение химии. Понятия – атом, молекула, относительная молекулярная масса, относительная атомная масса, молярная масса.
- •1.3 Основные представления об энергетике химических процессов, функции состояния: внутренняя энергия, энтальпия, энтропия.
- •1.4 Свободная энергия Гиббса. Направление течения процесса. Анализ уравнения энергии Гиббса. Влияние энталальпийного и энтропийного факторов на направление протекания процессов.
- •1.6 Скорость химических реакций. Основной закон химической кинетики – закон действующих масс. Порядок и молекулярность реакции. Правило Ван-Гоффа. Кинетические уравнения.
- •1.7 Зависимость скорости реакции от температуры. Энергия активации. Уравнение Аррениуса.
- •1.8 Катализ. Гомогенный, гетерогенный, ферментативный. Особенности отдельных типов катализа. Примеры.
- •1.9 Химическое равновесие. Константа равновесия. Влияние температуры, концентрации реагентов, давления и катализатора на смещение равновесия.
- •1.10 Химическое равновесие. Принцип Ле-Шателье-Брауна. Характер смещения равновесия в зависимости от типа реакции (экзо- , эндотермические); реакции идущие с изменением объема.
- •1.11 Дисперсные системы. Растворы, растворимость. Факторы влияющие на растворимость. Способы выражения концентрации растворов (молярная и мольная концентрации эквивалента, молярная и массовая доли).
- •1.13 Идеальный раствор. Законы Рауля. Понижение давления насыщенного пара, понижение температуры замерзания, повышение температуры кипения растворов неэлектролитов.
- •1.14 Явление осмоса. Осмотическое давление. Закон Вант-Гоффа применительно к растворам неэлектролитов. Роль осмотического давления в биологических системах.
- •1.17 Слабые электролиты. Степень и константа диссоциации. Взаимосвязь константы и степени диссоциации (закон разбавления Освальда)
- •1.19 Диссоциация воды. Ионное произведение воды. Водородный показатель рН.
- •1.20 Гидролиз солей. Константа и степень гидролиза. Факторы смещения равновесия гидролиза. Необратимый гидродиз.
- •1.23 Современные представления о строении атомов. Энергетические уровни. Порядок заполнения энергетических уровней. Принцип Паули. Правило Хунда.
- •1.25 Строение атома и периодический закон. Периодичность изменения свойств s-, p- и d элементов.
- •1.26 Периодический закон. Свойства атомов: атомный радиус, ионизационный потенциал и сродство к электрону. Относительная электроотрицательность элементов. Металлы и неметаллы, их положение в таблице.
- •1.27 Метод валентных связей. Насыщаемость связи. Направленность связей. Определение валентности по методу валентных связей.
- •1.28 Метод молекулярных орбиталей. Связывающие, разрыхляющие, не связывающие молекулярные орбитали. Порядок связи.
- •1.29 Ковалентная связь. Полярность ковалентной связи. Дипольный момент. Одинарные, двойные и тройные связи.
- •1.30 Межмолекулярное взаимодействие. Ориентационное, индукционное и дисперсное взаимодействие. Водородная связь. Биологическая роль водородной связи и межмолекулярного взаимодействия.
- •1.31 Ионная связь. Степень ионности. Донорно-акцепторный механизм образования ковалентной связи. Металлическая связь.
1.25 Строение атома и периодический закон. Периодичность изменения свойств s-, p- и d элементов.
Атом хим. элемента состоит из 3 основных элементарных частиц: положительно заряженных протонов, не имеющих заряда нейронов и отрицательно заряженных электронов. В центре атома находится ядро состоящее из протонов и нейтронов, а вокруг него вращаются по орбиталям электроны. Число электронов = заряду ядра. Химический элемент – вид атома с определенным зарядом ядра. Изотопы – атомы одного и того же элемента, имеющих одинаковый заряд ядра, но разную массу. Изобары – атомы разных элементов имеющие разный заряд ядра, но одинаковую атомную массу. Современная модель основана на 2 фундаментальных принципах квантовой физики. 1. электрон имеет свойства и частицы и волны одновременно. 2. частицы не имеют строго определенных координат и скоростей движения. Энергетический уровень (квантовое число n) – расстояние от ядра. С увеличением n энергия электрона возрастает. Число энергетических уровней = номеру периода в котором находится элемент. Максимальное число электронов определяется N=2n2. Энергетический подуровень обозначают буквами s (сферическая), p (гантелеобразная), d (4 лепестковая розетка), f (более сложная). Магнитное квантовое число взаимодействие электронного облака с внешними магнитными полями. Спиновое квантовое число собственное вращение электрона вокруг своей оси. Периодический закон. Свойства элементов, а также строение и свойства их соединений находятся в периодической зависимости от заряда ядер их атомов. Порядковый номер элемента = заряду его ядра и количеству электронов. Число нейтронов = атомная масса – порядковый номер. Каждый период начинается s - элементов (s1 щелочной металл) и заканчивается p – элементом (s2p6 инертный газ). 1 период содержит 2 s – элемента. 2-3 содержит по 2 s – элемента и 6 р – элементов. В 4-5 между s и p вклиниваются d элементы. Число электронных уровней = номеру периода. Для элементов главных подгрупп число электронов = номеру группы. В группе сверху вниз усиливаются металлические свойства. Слева на право усиливаются не металлические свойства (способность принимать электроны).
1.26 Периодический закон. Свойства атомов: атомный радиус, ионизационный потенциал и сродство к электрону. Относительная электроотрицательность элементов. Металлы и неметаллы, их положение в таблице.
Периодический закон. Свойства элементов, а также строение и свойства их соединений находятся в периодической зависимости от заряда ядер их атомов. Порядковый номер элемента = заряду его ядра и количеству электронов. Число нейтронов = атомная масса – порядковый номер. Каждый период начинается s - элементов (s1 щелочной металл) и заканчивается p – элементом (s2p6 инертный газ). 1 период содержит 2 s – элемента. 2-3 содержит по 2 s – элемента и 6 р – элементов. В 4-5 между s и p вклиниваются d элементы. Число электронных уровней = номеру периода. Для элементов главных подгрупп число электронов = номеру группы. В группе сверху вниз усиливаются металлические свойства. Слева на право усиливаются не металлические свойства (способность принимать электроны). Потенциал ионизации энергия ионизации) – энергия необходимая для отрыва от изолированного атома электрона, слабее других связанного с ядром. Потенциал ионизации характерен для металлов – энергия необходимая для реализации процесса приводящего к образованию катиона. Сродством к электрону – называется изменение энергии системы, происходящее при соединении электрона к изолированному атому. Характерно для неметаллов. Для большинства атомов сопровождается выделением теплоты. Электроотрицательность – способность элемента в соединении оттягивать на себя общие электроны химической связи. При относительной электроотрицательности значение электроотрицательности лития принимают за 1 и делят на него значение других элементов. Наибольшие значения имеют типичные неметаллы, наименьшее активные металлы.