
- •1.1 Атомно-молекулярное учение химии. Понятия – атом, молекула, относительная молекулярная масса, относительная атомная масса, молярная масса.
- •1.3 Основные представления об энергетике химических процессов, функции состояния: внутренняя энергия, энтальпия, энтропия.
- •1.4 Свободная энергия Гиббса. Направление течения процесса. Анализ уравнения энергии Гиббса. Влияние энталальпийного и энтропийного факторов на направление протекания процессов.
- •1.6 Скорость химических реакций. Основной закон химической кинетики – закон действующих масс. Порядок и молекулярность реакции. Правило Ван-Гоффа. Кинетические уравнения.
- •1.7 Зависимость скорости реакции от температуры. Энергия активации. Уравнение Аррениуса.
- •1.8 Катализ. Гомогенный, гетерогенный, ферментативный. Особенности отдельных типов катализа. Примеры.
- •1.9 Химическое равновесие. Константа равновесия. Влияние температуры, концентрации реагентов, давления и катализатора на смещение равновесия.
- •1.10 Химическое равновесие. Принцип Ле-Шателье-Брауна. Характер смещения равновесия в зависимости от типа реакции (экзо- , эндотермические); реакции идущие с изменением объема.
- •1.11 Дисперсные системы. Растворы, растворимость. Факторы влияющие на растворимость. Способы выражения концентрации растворов (молярная и мольная концентрации эквивалента, молярная и массовая доли).
- •1.13 Идеальный раствор. Законы Рауля. Понижение давления насыщенного пара, понижение температуры замерзания, повышение температуры кипения растворов неэлектролитов.
- •1.14 Явление осмоса. Осмотическое давление. Закон Вант-Гоффа применительно к растворам неэлектролитов. Роль осмотического давления в биологических системах.
- •1.17 Слабые электролиты. Степень и константа диссоциации. Взаимосвязь константы и степени диссоциации (закон разбавления Освальда)
- •1.19 Диссоциация воды. Ионное произведение воды. Водородный показатель рН.
- •1.20 Гидролиз солей. Константа и степень гидролиза. Факторы смещения равновесия гидролиза. Необратимый гидродиз.
- •1.23 Современные представления о строении атомов. Энергетические уровни. Порядок заполнения энергетических уровней. Принцип Паули. Правило Хунда.
- •1.25 Строение атома и периодический закон. Периодичность изменения свойств s-, p- и d элементов.
- •1.26 Периодический закон. Свойства атомов: атомный радиус, ионизационный потенциал и сродство к электрону. Относительная электроотрицательность элементов. Металлы и неметаллы, их положение в таблице.
- •1.27 Метод валентных связей. Насыщаемость связи. Направленность связей. Определение валентности по методу валентных связей.
- •1.28 Метод молекулярных орбиталей. Связывающие, разрыхляющие, не связывающие молекулярные орбитали. Порядок связи.
- •1.29 Ковалентная связь. Полярность ковалентной связи. Дипольный момент. Одинарные, двойные и тройные связи.
- •1.30 Межмолекулярное взаимодействие. Ориентационное, индукционное и дисперсное взаимодействие. Водородная связь. Биологическая роль водородной связи и межмолекулярного взаимодействия.
- •1.31 Ионная связь. Степень ионности. Донорно-акцепторный механизм образования ковалентной связи. Металлическая связь.
1.8 Катализ. Гомогенный, гетерогенный, ферментативный. Особенности отдельных типов катализа. Примеры.
Катализаторы – вещества, изменяющие скорость реакции, но не расходующиеся в процессе реакции. Могут увеличивать скорость реакции (активаторы) или замедлять (ингибиторы). Бывают твердыми, жидкими и газообразными. Гомогенный катализ. Реагирующие вещества и катализатор образуют однородную, однофазную систему. Например: 2SO2+O2=2SO3 Механизм катализа объясняется образованием промежуточного соединения катализатора с одним из реагирующих веществ. Схема действия катализатора в две стадии O2+2NO(катализатор)=2NO(пром. соединение)
NO2+SO2=SO3
(продукт)+NO(катализатор).
Геторогенный
катализ.
Реагирующие вещества и катализатор
составляют неоднородную, многофазную
систему, в которой катализатор находится
в виде отдельной фазы. Примеры: синтез
аммиака
Каталитическое
окисление аммиака
1.9 Химическое равновесие. Константа равновесия. Влияние температуры, концентрации реагентов, давления и катализатора на смещение равновесия.
Химическое
равновесие
– состояние системы при котором скорости
прямой и обратной реакции равны.
Выводится из равенства скоростей прямой
и обратной реакций и выражается константой
равновесия К. Для обратимой реакции в
общем виде
В
соответствии с законом действующих
масс кинетический. Скорость хим. реакции
прямо пропорционально произведению
концентраций реагирующих веществ,
взятых в степенях их стехиометрических
коэффициентов.
преобразуем
и получаем закон действующих масс
термодинамический. Константа
равновесия
хим. реакции = произведению концентраций
продуктов реакции, взятых в степенях
их стехиометрических коэффициентов в
уравнении реакции, деленному на
произведение концентраций исходных
веществ, взятых в степенях стехиометрических
коэффициентов.
константа
равновесия величина постоянная для
данной реакции при данной температуре.
Связана с изменением потенциала Гиббса
в стандартных условиях.
процесс
идет самопроизвольно в прямом направление,
если потенциал уменьшается следовательно
константа равновесия больше 1. Концентрация
продуктов > концентрации исходных
веществ. Если наоборот, то реакция
практически не шла. При повышении
температуры равновесие сместиться в
сторону эндотермической реакции, при
понижении в сторону экзотермической.
При увеличении давления равновесие
смещается в направлении реакции, идущей
с уменьшением объема газообразных
веществ, при понижении давления в сторону
реакции идущей с увеличением объема.
При увеличении концентрации исходных
веществ равновесие смещается в сторону
прямой реакции.
1.10 Химическое равновесие. Принцип Ле-Шателье-Брауна. Характер смещения равновесия в зависимости от типа реакции (экзо- , эндотермические); реакции идущие с изменением объема.
Химическое
равновесие
– состояние системы при котором скорости
прямой и обратной реакции равны.
Выводится из равенства скоростей прямой
и обратной реакций и выражается константой
равновесия К. Для обратимой реакции в
общем виде
Принцип Ле-Шателье-Брауна. Если на систему, находящуюся в равновесии, оказывать внешнее воздействие, то равновесие сдвигается в направлении, ослабляющем это воздействие. Реакции с участием газообразных веществ. При увеличении давления равновесие смещается в направлении реакции, идущей с уменьшением объема газообразных веществ, при понижении давления в сторону реакции идущей с увеличением объема.
уменьшение
объема
увеличение
объема
При
повышении температуры равновесие
смещается в сторону эндотермической
реакции, при понижении в сторону
экзотермической.
Повышение Т
понижение
Т. При увеличении концентрации исходных
веществ или уменьшении концентрации
продуктов реакции равновесие смещается
в сторону прямой реакции, при увеличении
концентрации продуктов реакции или
уменьшении концентрации исходных
веществ - в сторону обратной реакции.