
- •2. Атомно-кристаллическое строение металлов
- •Строение реальных кристаллов
- •Аллотропические модификации металлов
- •3.2. Механизм процесса кристаллизации
- •3.3. Аморфное состояние металлов
- •3.4. Реальная форма кристаллических образований
- •3.5. Получение монокристаллов
- •3.6. Жидкие кристаллы
- •3.7. Строение стального слитка
- •3.8. Методы исследования структуры
- •4.2.2. Твердость – способность материалов сопротивляться пластической или упругой деформации при внедрении в него более твердого тела, которое называется индентором.
- •4.3. Конструкционная прочность металлов и сплавов
- •4.4. Пути повышения прочности металлов
- •4.5. Влияние нагрева на строение и свойства деформированного металла (рекристаллизация)
- •5.2. Химические соединения
- •5.3. Электронные соединения (фазы Юм – Розари)
- •5.4. Механические смеси
- •6. Диаграмма состояния
- •6.1. Построение диаграмм состояния (равновесия)
- •6.2. Правило отрезков или правило рычага
- •6.3. Диаграмма состояния для сплавов, образующих механические смеси из чистых компонентов ( I рода)
- •Диаграмма состояния для сплавов с ограниченной растворимостью в твердом состоянии (III рода)
- •6.7. Диаграмма состояния для сплавов, испытывающих полиморфные превращения
- •6.8. Связь диаграммы состояния сплава с его свойствами
- •7 Анализ диаграммы «железо - углерод»
- •7.1. Характеристика линий и точек диаграммы Fe – Fe3c
- •Механические свойства некоторых марок серых чугунов (гост 1412-85)
- •8.2. Превращения в стали при нагреве - образование аустенита (I превращение)
- •8.4. Перлитное превращение
- •8.5. Бейнитное превращение
- •9.2. Классификация видов термической обработки
- •9.3. Способы закалки
- •9.4. Закаливаемость и прокаливаемость
- •10. Внутренние напряжения
- •11. Отпуск
- •12. Химико-термическая обработка (хто)
- •12.1. Цементация стали
- •13. Термомеханическая обработка
- •14.2. Влияние легирующих элементов на кинетику распада аустенита
- •14.5. Принципы комплексного легирования
- •14.6. Технологические особенности термической обработки легированной стали
- •15. Конструкционные материалы
- •15.1. Классификация конструкционных сталей
- •16. Инструментальные стали и сплавы
- •16.1. Режущие стали
- •16.2. Быстрорежущие стали
- •16.3. Твердые peжyщие сплавы
- •16.4. Штамповые стали
- •16.5. Стали для измерительных инструментов
- •17.2. Жаростойкие и жаропрочные стали и сплавы
- •17.3. Криогенные стали и сплавы
- •17.4. Магнитные стали и сплавы
- •17.5. Сплавы с особенностями электросопротивления
- •17.6. Сплавы с высоким электросопротивлением
- •17.7. Сплавы с заданным коэффициентом теплового расширения
- •Технические железоникелевые сплавы относятся к сталям аустенитного класса.
- •17.8. Сплавы с заданными упругими свойствами
- •18.2. Алюминиевые сплавы
- •18.5. Антифрикционные сплавы
- •Список использованных источников
- •Содержание
16.3. Твердые peжyщие сплавы
Твердые режущие сплавы получают методом порошковой металлургии путем спекания предварительно спрессованного металлического порошка; они обладают исключительной красностойкостью и высокой твердостью. К таким сплавам относятся:
- литые сплавы - стеллиты, сормайты;
- металлокерамические сплавы - победиты.
Компонентами спекаемых твердых сплавов являются:
- кобальт (Со) как связка;
- карбиды вольфрама (WC), титана (TiС), тантала (TаС), ниобия (NbC), ванадия (VС), хрома (СrС).
Функцией кобальта является регулирование вязкости твердого сплава. Карбид вольфрама хорошо смачивается кобальтом, что влияет на схватывание с твердой фазой.
Карбид вольфрама является основой сплавов, обеспечивает прочность на изгиб и кромочную прочность в системе WC – Со.
Карбид титана значительно тверже карбида вольфрама, менее растворим и снижает вязкость сплава.
Карбид тантала замещает карбид вольфрама, повышает теплостойкость, незначительно снижает вязкость сплава по сравнению с карбидом титана.
Промышленностью выпускаются три труппы металлокерамических твердых сплавов:
- WC + Со – группа ВК (ВК6, ВК8);
- WC + ТiС + Со – группа ТК (Т15К6)
- WС + TiC + TaC + Со – группа ТТК (ТТ7К15).
16.4. Штамповые стали
Для обработки металлов давлением применяют следующие инструменты, деформирующие металл: штампы, пуансоны, ролики, валики.
Стали, применяемые для изготовления инструмента такого рода, называют штамповыми сталями.
Штамповые стали делятся на две группы:
- деформирующие металл в холодном состоянии;
- деформирующие металл в горячем состоянии.
Особая группа штамповых сталей - стали для пресс-форм литья под давлением.
Стали для деформирования в холодном состоянии должны обладать высокой твердостью, прочностью, сопротивлением пластической деформации, износостойкостью, вязкостью, теплостойкостью.
Стали с небольшой прокаливаемостъю, имеющие вязкую сердцевину (У10, У11, У12, ХВ, 9С) применяет после закалки и отпуска, цианирования или хромирования, что повышает их износостойкость.
Для крупных штампов применяют стали с повышенной прокаливаемостью (ХГС, ХГСВФ).
Стали для штампов, работающих при ударных нагрузках, содержат 0,4-0,6 % углерода (4ХС, 6ХC, 4ХВ2С, 5ХВ2С, 6ХВ2С).
Стали для деформирования в горячем состояния работают в сложных условиях и должны иметь высокую износостойкость, прочность, сопротивление пластической деформации, повышенную теплостойкость, хорошую окалиностойкость, высокое сопротивление термической усталости.
Деформация сталей происходит при ударе (ковка, штамповка), а при медленном приложении нагрузки (вытяжка, прессование, выдавливание) штамп сильнее нагревается.
В зависимости от условий работы штампы делятся на три группы:
- ковочные;
- для горячей протяжки, высадки и прессования;
- для пресс-форм литья под давлением.
Стали ковочных штампов должны иметь высокую ударную вязкость, теплостойкость и хорошую прокаливаемость. Для таких штампов применяют стали среднеуглеродистые (0,5-0,6 %С), легированные Mn, Ni,.Cr, V, W (5XHМ, 5ХНВ, 5ХГМ, 5ХНСВ, 5ХНТ).
Стали для горячей протяжки, высадки и прессования -высоковольфрамовые с 8-12 % W и 2 % Сг (4Х5В2ФС, 4Х2В5ФМ, 4Х4В4ФМ, 4ХВ2С, 5ХВГ). Эти стали подвергаются особой термической обработке.
Стали для пресс-форм литья под давлением подвергаются износу, коррозии, эррозии и разгару (образованию сетки трещин на поверхности). К таким сталям относятся 3X2B8, 4ХВ2С (тепло - разгаростойкие).