Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
3_Vektornaya_algebra_i_analiticheskaya_geometri...doc
Скачиваний:
0
Добавлен:
01.03.2025
Размер:
10.93 Mб
Скачать

3 Плоскость

Утверждение. Любое уравнение первой степени в трехмерном пространстве – есть плоскость.

(18)

– общее уравнение плоскости.

Действительно, при будем иметь

– плоскость, параллельную оси .

При

– плоскость, параллельная оси .

При ;

– плоскость, параллельная плоскости .

Короче, каких переменных нет в уравнении, тем осям и параллельна плоскость, описанная этим уравнением.

Пример 2.

Рисунок 22 – Плоскость

Рисунок 23 – Плоскость

Рисунок 24 – Плоскость

Уравнение – плоскость .

Уравнение – плоскость .

Уравнение – плоскость .

Задача 1. Через точку проведем плоскость , перпендикулярную вектору (рисунок 25).

Рисунок 25

Для решения этой задачи на плоскости возьмем текущую точку . Векторы и перпендикулярны, значит их скалярное произведение равно нулю, то есть

. (19)

Это уравнение плоскости, проходящей через точку и перпендикулярной вектору .

Вектор , перпендикулярный плоскости , называется нормалью плоскости.

Преобразуем уравнение (19):

и переобозначим через

.

Получим уравнение (18).

Задача 2. Через три точки провести плоскость.

Пусть даны точки ; ; и для вывода уравнения возьмем четвертую точку – текущую (рисунок 26).

Рисунок 26

Проведем векторы , и . И так как эти векторы компланарны, то их смешанное произведение равно нулю, то есть

. (20)

Задача 3. Пусть плоскость отсекает на осях ; ; соответственно отрезки ; ; , то есть плоскость проходит через три точки ; ; (рисунок 27).

Рисунок 27

Подставив координаты этих точек в уравнение (20), получим:

.

Раскроем определитель и получим

или .

Поделим обе части на , получим

(21)

уравнение плоскости в отрезках.

Если умножить обе части общего уравнения (18) на нормирующий множитель , взяв его со знаком, противоположным знаку свободного члена, то получим уравнение плоскости

, (22)

которое называется нормальным. Где углы ; ; и – это углы между векторами нормали плоскости с соответствующими осями ; ; .

Расстояние от точки до плоскости находят по формулам:

(23)

или

, (24)

подставив координаты точки в нормальное уравнение плоскости.

Под углом между плоскостями и понимается один из двугранных углов, образованных этими плоскостями.

Двугранный угол измеряется линейным, например, это угол , который равен углу между нормалями, как углы с соответственно перпендикулярными сторонами (рисунок 28).

Рисунок 28

Так что, если заданы две плоскости:

: , .

: , , то

.

В координатной форме:

. (25)

Если плоскости перпендикулярны, то и их нормали , но тогда . Тогда

(26)

– условие перпендикулярности двух плоскостей.

А если плоскости параллельны, то и их нормальные векторы , значит, координаты этих векторов будут пропорциональны, то есть

(27)

– это условие параллельности двух плоскостей.