
- •Генетическая классификация горных пород. Влияние условий образования на структуру и свойства горных пород.
- •Магматические горные породы: механизмы образования, особенности строения, минеральный состав, свойства, применение в строительстве.
- •Породообразующие минералы магматических горных пород: химический состав, свойства.
- •Осадочные горные породы: условия образования, минеральный состав, свойства, применение в строительстве.
- •Породообразующие минералы осадочных горных пород: химический состав, свойства.
- •Метаморфические горные породы: условия образования, особенности строения, минеральный состав, свойства, применение в строительстве.
- •Состав, макро- и микроструктура древесины.
- •Физико-механические свойства древесины.
- •Влажность древесины и ее влияние на свойства древесины.
- •Глины: условия образования, составы и основные свойства глин.
- •Добавки, применяемые в производстве строительной керамики.
- •Основы технологии производства изделий строительной керамики.
- •Физико-химические процессы, протекающие в сырце при его обжиге.
- •Структура и состав строительного стекла. Свойства строительного стекла.
- •Разновидности строительного стекла и их применение в строительстве. Понятие о ситаллах.
- •Основы технологии производства изделий строительного стекла.
- •Особенности поведения металлов при их деформировании. Обработка металлов давлением.
- •Кристаллизация металлов, типы структур, дефекты кристаллов.
- •Термическая и химико-термическая обработка металлов.
- •Гипсовые вяжущие вещества: сырье, производство, технические свойства, применение в строительстве.
- •Твердение гипсового теста .
- •Известь строительная воздушная: сырье, производство, технические свойства, применение в строительстве. Твердение известкового теста.
- •Основы технологии портландцемента.
- •Минеральный состав портландцементного клинкера, характеристики клинкерных минералов и их влияние на свойства портландцемента.
- •Технические свойства портландцемента.
- •Твердение цементного теста. Состав и строение цементного камня.
- •Разновидности портландцемента: быстротвердеющий, сульфатостойкий, белый и цветные.
- •Активные минеральные добавки. Смешанные цементы, их свойства.
- •Глиноземистый цемент: сырье, производство, свойства и применение в строительстве.
- •Определение бетонов и их классификации.
- •Свойства бетонной смеси. Зависимость свойств бетонной смеси от различных факторов.
- •Основы технологии тяжелого бетона.
- •Алгоритм подбора состава тяжелого бетона.
- •Прочность тяжелого бетона, факторы, влияющие на прочность.
- •Свойства тяжелого бетона: пористость, морозостойкость, водонепроницаемость, тепловыделение, усадки и набухание.
- •Легкий бетон на пористых заполнителях: состав, особенности технологии, свойства, применение в строительстве.
- •Ячеистые бетоны: классификация, основы технологии, свойства, применение в строительстве.
- •Строительные растворные смеси: состав, свойства. Сухие растворные смеси.
- •Определение битума. Химический и групповой составы, структура битумов.
- •Основные типы битумов, применяемых в строительстве и их технические свойства.
- •Рулонные кровельные и гидроизоляционные материалы на основе битумов.
- •Горячие и холодные битумные мастики, их составы и сравнительная характеристика.
- •Жидкие битумы и битумные эмульсии: состав, применение в строительстве.
- •Теплоизоляционные материалы, применяемые в современном строительстве и их характеристика.
- •Классификация и свойства теплоизоляционных материалов.
- •Состав и свойства пластмасс, их достоинства и недостатки. Разновидности материалов и изделий, получаемых из строительных пластмасс.
- •Типы полимеров и наполнителей, используемых в строительных пластмассах.
- •Разновидности красок, применяемых в строительстве.
- •Отделочные материалы и их основные компоненты. Свойства лакокрасочных материалов.
- •50 . Методика определения твердости красочных составов.
- •51. Методика определения прочности при ударе красочных составов.
- •52. Методика определения средней плотности материалов.
- •53. Методика определения нормальной густоты гипсового вяжущего.
- •54. Методика определения вспучиваемости вермикулита-сырца.
- •55. Методика определения насыпной плотности вспученного вермикулита.
- •56/57. Методика изготовления образцов для определения прочностных характеристик асбесто-вермикулитовых плит.
- •58. Методика определения укрывистости красочного покрытия.
- •59. Методика определения истинной плотности материалов.
- •60. Методика определения водопоглощения.
- •61. Методика определения прочностных характеристик гипсового камня.
- •62. Методика определения пористости материалов.
- •63. Методика определения сроков схватывания гипсового вяжущего.
- •64. Метод определения маслоемкости пигмента.
- •65. Методика определения растяжимости битума.
- •66. Методика определения соответствия госТу мелкого заполнителя для тяжелого бетона.
- •67. Методика определения нормальной густоты портландского цемента.
- •68. Методика определения истираемости.
- •69. Методика определения сроков схватывания портландского цемента.
- •71. Методика определения температуры размягчения битума.
Свойства тяжелого бетона: пористость, морозостойкость, водонепроницаемость, тепловыделение, усадки и набухание.
Средняя плотность тяжелого бетона колеблется в пределах 1800—2500 кг/м3 и зависит от средней плотности заполнителей. Пористость. Бетон не является абсолютно плотным телом. Поры, хотя бы в очень малых количествах, будут находиться внутри частиц заполнителя, в цементном камне, между заполнителем и цементным камнем. Пористость тяжелого бетона колеблется от 6 до 15% в зависимости от рода заполнителей, состава бетона и методов уплотнения. Большое значение имеет характер пористости: крупные открытые поры ухудшают свойства бетона, мелкие замкнутые (при использовании пластифицирующих и гидрофобных добавок) улучшают свойства бетона.Морозостойкость тяжелого бетона может колебаться от 50 до 300, марки по морозостойкости— 50, 100, 150, 200, 300. Морозостойкость бетона зависит от характера и величины пористости бетона, вида цемента и заполнителей.Жаростойкость тяжелого бетона невелика. Его можно применять для конструкций, подвергающихся длительному нагреву до температур не выше 200° С. Прочность при этом снижается на 30—50%, что надо учитывать при проектировании состава бетона.Деформативность бетона.В бетоне различают деформации двух видов:объемные, развивающиеся во всех направлениях подвлиянием усадки, изменения температуры и влажности; силовые, развивающиеся главным образом вдольнаправления действия сил.Начиная с малых напряжений, в нем помимоупругих восстанавливающихся деформаций развиваютсянеупругие остаточные деформации.Поэтому силовые деформации в зависимости от характераприложения нагрузки и длительности ее действияподразделяют на три вида: при однократном загружениикратковременной нагрузкой, при длительном действиинагрузки и при многократно повторном действии нагрузки. При однократномзагружении бетона кратковременноприложенной нагрузкой деформация бетона образуется изупругой и неупругой пластической деформаций.Небольшая доля неупругих деформаций в течениенекоторого периода времени после разгрузкивосстанавливается.Свойство бетона, характеризующееся нарастанием неупругих деформаций при длительном действии нагрузки,называют ползучестью бетона.Деформации ползучести могут в 3-4 раза превышатьупругие деформации.Ползучесть бетона в сухой среде значительно больше,чем во влажной. Технологические факторы влияютна ползучесть бетона:с увеличением В/Ц и количества цемента на единицуобъема бетонной смеси ползучесть возрастает; с повышением прочности зерен заполнителей ползучесть уменьшается;с повышением прочности бетона, ползучесть уменьшается.Деформации бетона при многократно повторяющимся действии нагрузки. Многократное повторение циклов загружения и разгрузкибетона приводит к постепенному накапливанию неупругихдеформаций. После достаточно большого числа циклов этинеупругие деформации, соответствующие данному уровнюнапряжений, постепенно выбираются, ползучесть достигаетсвоего предельного значения, бетон начинает работатьупруго. При больших напряжениях после некоторого числа циклов неупругие деформации начинают неограниченно расти, что приводит к разрушению образца.