
- •Генетическая классификация горных пород. Влияние условий образования на структуру и свойства горных пород.
- •Магматические горные породы: механизмы образования, особенности строения, минеральный состав, свойства, применение в строительстве.
- •Породообразующие минералы магматических горных пород: химический состав, свойства.
- •Осадочные горные породы: условия образования, минеральный состав, свойства, применение в строительстве.
- •Породообразующие минералы осадочных горных пород: химический состав, свойства.
- •Метаморфические горные породы: условия образования, особенности строения, минеральный состав, свойства, применение в строительстве.
- •Состав, макро- и микроструктура древесины.
- •Физико-механические свойства древесины.
- •Влажность древесины и ее влияние на свойства древесины.
- •Глины: условия образования, составы и основные свойства глин.
- •Добавки, применяемые в производстве строительной керамики.
- •Основы технологии производства изделий строительной керамики.
- •Физико-химические процессы, протекающие в сырце при его обжиге.
- •Структура и состав строительного стекла. Свойства строительного стекла.
- •Разновидности строительного стекла и их применение в строительстве. Понятие о ситаллах.
- •Основы технологии производства изделий строительного стекла.
- •Особенности поведения металлов при их деформировании. Обработка металлов давлением.
- •Кристаллизация металлов, типы структур, дефекты кристаллов.
- •Термическая и химико-термическая обработка металлов.
- •Гипсовые вяжущие вещества: сырье, производство, технические свойства, применение в строительстве.
- •Твердение гипсового теста .
- •Известь строительная воздушная: сырье, производство, технические свойства, применение в строительстве. Твердение известкового теста.
- •Основы технологии портландцемента.
- •Минеральный состав портландцементного клинкера, характеристики клинкерных минералов и их влияние на свойства портландцемента.
- •Технические свойства портландцемента.
- •Твердение цементного теста. Состав и строение цементного камня.
- •Разновидности портландцемента: быстротвердеющий, сульфатостойкий, белый и цветные.
- •Активные минеральные добавки. Смешанные цементы, их свойства.
- •Глиноземистый цемент: сырье, производство, свойства и применение в строительстве.
- •Определение бетонов и их классификации.
- •Свойства бетонной смеси. Зависимость свойств бетонной смеси от различных факторов.
- •Основы технологии тяжелого бетона.
- •Алгоритм подбора состава тяжелого бетона.
- •Прочность тяжелого бетона, факторы, влияющие на прочность.
- •Свойства тяжелого бетона: пористость, морозостойкость, водонепроницаемость, тепловыделение, усадки и набухание.
- •Легкий бетон на пористых заполнителях: состав, особенности технологии, свойства, применение в строительстве.
- •Ячеистые бетоны: классификация, основы технологии, свойства, применение в строительстве.
- •Строительные растворные смеси: состав, свойства. Сухие растворные смеси.
- •Определение битума. Химический и групповой составы, структура битумов.
- •Основные типы битумов, применяемых в строительстве и их технические свойства.
- •Рулонные кровельные и гидроизоляционные материалы на основе битумов.
- •Горячие и холодные битумные мастики, их составы и сравнительная характеристика.
- •Жидкие битумы и битумные эмульсии: состав, применение в строительстве.
- •Теплоизоляционные материалы, применяемые в современном строительстве и их характеристика.
- •Классификация и свойства теплоизоляционных материалов.
- •Состав и свойства пластмасс, их достоинства и недостатки. Разновидности материалов и изделий, получаемых из строительных пластмасс.
- •Типы полимеров и наполнителей, используемых в строительных пластмассах.
- •Разновидности красок, применяемых в строительстве.
- •Отделочные материалы и их основные компоненты. Свойства лакокрасочных материалов.
- •50 . Методика определения твердости красочных составов.
- •51. Методика определения прочности при ударе красочных составов.
- •52. Методика определения средней плотности материалов.
- •53. Методика определения нормальной густоты гипсового вяжущего.
- •54. Методика определения вспучиваемости вермикулита-сырца.
- •55. Методика определения насыпной плотности вспученного вермикулита.
- •56/57. Методика изготовления образцов для определения прочностных характеристик асбесто-вермикулитовых плит.
- •58. Методика определения укрывистости красочного покрытия.
- •59. Методика определения истинной плотности материалов.
- •60. Методика определения водопоглощения.
- •61. Методика определения прочностных характеристик гипсового камня.
- •62. Методика определения пористости материалов.
- •63. Методика определения сроков схватывания гипсового вяжущего.
- •64. Метод определения маслоемкости пигмента.
- •65. Методика определения растяжимости битума.
- •66. Методика определения соответствия госТу мелкого заполнителя для тяжелого бетона.
- •67. Методика определения нормальной густоты портландского цемента.
- •68. Методика определения истираемости.
- •69. Методика определения сроков схватывания портландского цемента.
- •71. Методика определения температуры размягчения битума.
Твердение гипсового теста .
При твердении строительного гипса происходит химическая реакция присоединения воды и образования двуводного сульфата кальция CaSO40.5H2O+1.5H2O=CaSO42H2O. При гидратации 1кг полугидрата выделяется 133кДж тепла. В теории, разработанной А. А. Байковым, твердение можно условно подразделить на три периода:1.Образование насыщенного раствора при растворении полугидрата (растворение) 2.Образование субмикрокристалловдвуводного гипса в результате прямого присоединения воды к полуводному гипсу (коллоидация) – схватывание. Отличительной особенностью этого периода является увеличение вязкости гипсового теста.3. Перекристаллизация двугидрата с образованием более крупных кристаллов (кристаллизация).
Объем твердеющего гипсового теста увеличивается на 0,5-1,0%. Это свойство используется при изготовлении архитектурных деталей и отливок из гипса, которые точно передают очертания формы.
Известь строительная воздушная: сырье, производство, технические свойства, применение в строительстве. Твердение известкового теста.
Воздушная известь – продукт умеренного обжига кальциево – магниевых карбонатных горных пород: мела, ракушечник, известняка, доломита, содержащих примеси глины не более6% . Основной составляющей известняка является карбонат кальция CaCO3. Обжиг сырья: CaCO3 = CaO+CO2 при t=1000-1500 0C. Продукт обжига содержит кроме СаО также некоторое количество оксида магния: MgCO3=MgO+CO2. Чем выше содержание основных оксидов (СаО, MgO), тем пластичнее известковое тесто и тем выше ее сорт. Обжиг известняка производят в шахтных печах, в которых известняк поступает в виде кусков размеров 8-20см. При обжиге удаляется углекислый гази получается негашеная известь в виде пористых кусков. Гашение воздушной извести заключается в гидратации оксида кальция CaO+H2O=Ca(OH)2 с выделением тепла 950кДж/кг, т. е. выделяют гашеную ( пушенка(И:В=1:1), известковое тесто(И:В=1:3), известковое молоко(И:В=1:5-10)) и негашеную известь(комовая, молотая). Производство: добыча сырья, дробление, классификация, обжиг, комовая известь, помол (для молотой негашеной извести) или гашение ( для гашеной извести). Строительные растворы на воздушной извести имеют невысокую прочность (при сжатии для гашеной извести 0,4-1МПа; для негашеной извести до5МПа), поэтому сорт устанавливают не по прочности, а по характеристикам ее состава. По виду содержащегося основного окисла воздушная известь подразделяется на: Кальциевую(70-96% СаО и до 5% MgO);Магнезиальную (MgO содержится в пределах - 5-20%);Доломитовую (MgO содержится в пределах - 20-40%). По времени гашения подразделяют на три группы: быстрогасящаяся (время гашения не более 8 мин); среднегасящаяся(время гашения не более 25 мин); медленногасящаяся (время гашения не менее 25 мин). В зависимости от вида извести и условий, в которых протекает процесс ее твердения, различают три вида твердения: карбонатное; гидратное. Карбонатное твердение складывается из двуходновременно протекающих процессов: 1) испарение физически связанной воды, кристаллизация Ca(OH)2 , 2) образование карбоната кальция по реакции: Са(ОН)2 + СО2 = СаСО3 + Н2О. Гидратным твердениемназывают процесс постепенного превращения в твердое камневидное тело известковых смесей на молотой негашеной извести, в результате взаимодействия извести с водой и образования Ca(OH)2. Строительную известь применяют для: приготовления строительных растворов; производства известково-пуццолановых вяжущих; производства термоизоляционных материалов; изготовления искусственных каменных материалов (силикатного кирпича, шлакобетонных блоков, газобетона); производства сухих строительных смесей. Преимущества применения молотой негашеной извести перед гашеной известью: Для приготовления растворов и бетонов используется вся известь,включая отходы в виде непогасившихся зерен. При гидратном твердении молотой негашеной извести выделяетсязначительное количество тепла, что ускоряет процессы твердения извести. Молотая негашеная известь характеризуется меньшейводопотребностью, чем гашеная известь. Изделия на негашеной извести имеют повышенную плотность, прочность, водостойкость и долговечность по сравнению с полученными на гашеной извести.Недостатки: «пыление», вредность и др.