
- •Основные теоретические вопросы дисциплины
- •Практические задания - сетевое планирование
- •1.1 Построение сетевых моделей
- •1.1. Теоретическое введение
- •1.2. Методические рекомендации по построению сетевых моделей
- •Задача №1.01
- •Решение
- •Задача №1.02
- •Решение
- •2. Расчет и анализ сетевых моделей
- •2.1. Теоретическое введение
- •2.2. Методические рекомендации Задача №2.01
- •Решение
- •Задача №2.02
- •Общие рекомендации
- •Решение
- •I. Поиск критических путей
- •II. Поиск резервов работ
- •Правило №1
- •3. Регрессионный и корреляционный анализ
- •3.1. Теоретическое введение
- •3.2. Методические рекомендации
- •3.2.1. Линейная регрессия
- •Вспомогательная таблица для линейной функции
- •Задача №3.01
- •Исходные данные задачи №3.01
- •Решение
- •3.2.2. Нелинейная регрессия
- •Гипербола
- •Экспонента
- •Парабола
- •4. Методы скользящего среднего и экспоненциального сглаживания
- •4.1. Теоретическое введение
- •Метод скользящего среднего
- •4.2. Методические рекомендации Задача №4.01
- •Исходные данные задачи №9.01
- •Решение
- •5. Основные модели управления запасами
- •5.1. Теоретическое введение
- •5.1.1. Модель Уилсона
- •Формулы модели Уилсона
- •5.1.2. Модель планирования экономичного размера партии
- •Формулы модели экономичного размера партии
- •5.2. Методические рекомендации
- •Задача №5.01
- •Решение
- •Задача №5.02
- •Решение
- •6. Модель управления запасами, учитывающая скидки
- •6.1. Теоретическое введение
- •6.2. Методические рекомендации
- •Задача №6.01
- •Решение
- •Задача №6.02
- •Решение
- •Методические рекомендации и задания к контрольной работе
- •1.1. Цель работы
- •1.2. Порядок выполнения работы
- •1.3. Теоретическая часть
- •Постановка задачи
- •Построение модели
- •2.3.2. Графический анализ оптимального решения на чувствительность
- •2.3.3. Анализ оптимального решения на чувствительность в Excel
- •3. Коэффициенты цф.
- •3.1. Цель работы
- •3.2. Порядок выполнения работы
- •3.3. Теоретическая часть
- •3.3.1. Стандартная модель транспортной задачи (тз)
- •Общий вид транспортной матрицы
- •3.3.2. Пример построения модели тз
- •Транспортные расходы по доставке муки (руб./т)
- •Определение переменных
- •Проверка сбалансированности задачи
- •Построение сбалансированной транспортной матрицы
- •Транспортная матрица задачи
- •Задание цф
- •Задание ограничений
- •3.4. Варианты Постановка задачи
- •4.1. Цель работы
- •4.2. Порядок выполнения работы
- •4.3. Теоретическая часть
- •Исходные параметры модели двухиндексной общей рз
- •Искомые параметры модели рз
- •Этапы построения модели
- •Модель двухиндексной общей рз
- •Этапы решения рз
- •4.4. Постановка задачи распределения производственных мощностей
- •4.5. Построение и решение рз лп Построение распределительной модели
- •4.6. Варианты
- •Экзаменационные вопросы
2.3.2. Графический анализ оптимального решения на чувствительность
Область допустимых решений задачи на рис.2.1 – многоугольник ОABCDE. Если связывающее ограничение (дефицитный ресурс) (2) передвигать до точки F, то это приведет к расширению области допустимых решений до многоугольника ОABCFE и к получению нового оптимального решения в точке F. При этом ограничение (2) станет избыточным. Новое решение (F) лучше прежнего (C), поскольку для пересечения с точкой F линия ЦФ должна пройти по направлению вектора (выходящего из начала координат и показывающего направление максимизации ЦФ) дальше точки С (рис.2.2).
(3)
(5)
(2) (4)
В
А С
F
D (1)
О Е
Рис.2.1. Исходная задача ЛП для графического анализа чувствительности
(3)
(5)
(2) (4)
В
А С
F
(1)
О E
Рис.2.2. Анализ максимального изменения запаса
дефицитного
ресурса (2) с целью улучшения оптимального
решения
Таким образом, чтобы графически определить максимальное изменение запаса дефицитного ресурса, улучшающее оптимальное решение, необходимо передвигать соответствующую прямую в направлении улучшения ЦФ до тех пор, пока это ограничение не станет избыточным.
Графический анализ максимально возможного изменения запаса недефицитного ресурса показан на рис.2.3. Передвинем несвязывающее ограничение (3) до пересечения с оптимальным решением в точке С.
(5)
(4)
(2) (3)
С
F
G (1)
D
О E
Рис.2.3. Анализ максимального изменения запаса
недефицитного ресурса (3), не изменяющего оптимальное решение С
Это соответствует уменьшению запаса недефицитного ресурса, который в оптимальной точке С исходной задачи (см. рис.2.1) расходовался не полностью. Областью допустимых решений станет многоугольник OGCDE. Оптимальное решение останется прежним (точка С). Таким образом, чтобы графически определить максимальное изменение запаса недефицитного ресурса, не меняющее оптимального решения, необходимо передвигать соответствующую прямую до пересечения с оптимальной точкой.
Для того чтобы выяснить, запас какого из дефицитных ресурсов выгоднее увеличивать в первую очередь, необходимо определить, какую пользу (например, прибыль) принесет увеличение запасов каждого из них на единицу. Для этих целей вводится понятие ценности дополнительной единицы i-го ресурса (теневая цена):
.
То
есть сначала наращивается запас ресурса,
имеющего максимальное значение
,
затем – второе по величине и т.д.
Графический анализ изменения целевых коэффициентов (например, цен на производимую продукцию), не приводящих к изменению оптимального решения, проводится путем вращения линии ЦФ. При увеличении коэффициента ЦФ или уменьшении коэффициента целевая прямая на графике вращается вокруг оптимальной точки по часовой стрелке. Если уменьшается или же увеличивается , то целевая прямая вращается вокруг оптимальной точки против часовой стрелки (рис.2.4).
Уменьшение цены 1 ( ) (3)
или уменьшение
цены 2 ( )
(2) (4)
Н С (5)
(1)
J
Увеличение
цены 1 ( )
или уменьшение
цены 2 ( )
Рис.2.4. Анализ изменения коэффициентов и ЦФ
Зафиксируем
значение
.
Оптимальное решение в точке С не будет
меняться при увеличении
до тех пор, пока целевая прямая не
совпадет с прямой (2). Аналогично
оптимальное решение в точке С не будет
меняться при уменьшении
до тех пор, пока целевая прямая не
совпадет с прямой (1).
При таких поворотах точка С будет оставаться оптимальной до тех пор, пока наклон целевой прямой не выйдет за пределы, определяемые наклоном прямых ограничений (1) и (2). Если целевая прямая выйдет за пределы наклона (1) или (2), то оптимальной станет соответственно точка H или J.
Таким образом, нижний и верхний пределы изменения цены 1 определяются значениями коэффициента , при которых наклон целевой прямой совпадает соответственно с наклонами прямых ограничений (1) и (2).