
- •1. История развития науки «Гидравлика и гидропривод»
- •2.Виды жидкостей.
- •3.Силы действующие на жидкость.
- •Плотность жидкости и удельный вес.
- •Чем характеризуется сжимаемость жидкости и газа?
- •Вязкость жидкости, определение.
- •Коэффициент динамической вязкости.
- •8.Коэффициент кинематической вязкости.
- •Гидростатическое давление, определение и его свойства.
- •10.Формула гидростатического давления.
- •11.Понятие идеальной жидкости.
- •12.Элементарная струйка и поток.
- •13.Гидравлические элементы потока.
- •14.Средняя скорость потока и расход.
- •15.Уравнение неразрывности.
- •Пьезометрический напор.
- •17.Скоростной напор, его величина.
- •18.Трубка Пито, назначение.
- •Закон Паскаля.
- •Уравнение покоя жидкости. Уравнение Эйлера.
- •Частные случаи Стационарный одномерный поток
- •21.Эпюра давления жидкости на вертикальную стенку.
- •22.Единицы измерения давления. Абсолютное давления. Вакуум.
- •23.Уравнение д.Бернули для элементарной струйки.
- •24.Классификация видов движения жидкости.
- •Геометрический и энергетический смысл уравнения д.Бернули.
- •26.Режимы течения жидкости. Критерии о.Рейнольдса.
- •29.Напорный и безнапорный поток.
- •30.Гидравлически гладкие и шероховатые трубы.
- •31.Истечение жидкости через малые отверстия и насадки. Формула расхода
- •32.Коэффициент сжатия струи.
- •33.Коэффициент скорости и расхода.
- •34.Классификация трубопроводов.
- •37.Коэффициент гидравлического трения.
- •38.Простой трубопровод, определение.
- •39.Сложные трубопроводы.
- •40.Виды соединений трубопроводов.
- •41.Самотечный трубопровод.
- •42.Общая классификация насосов.
- •43.Напор создаваемый насосом.
- •44.Основные технические показатели насосов
- •45.Характеристика трубопровода
- •46.Подача насоса
- •47.Подводимая мощность к насосу
- •48. Гидравлическая (полезная) мощность насоса
- •49. 0Бъемный к.П.Д. Насоса
- •50. Гидравлический к.П.Д. Насоса
- •52. Общий к.П.Д. Насоса
- •53. Рабочий объем поршневого насоса
- •54. Подача объемного поршневого насоса
- •55. Рабочая характеристика поршневого насоса
- •56.Способы регулирования подачи объемного насоса
- •57. Рабочая (действительная) характеристика центробежного насоса
- •58. Способы регулирования подачи центробежного насоса
- •59. Схемы соединений центробежных насосов при работе на трубопровод
- •60. Классификация роторных насосов.
- •61. Схема поршневого насоса
- •62. Составные части простейшего гидропривода.
- •63. Характеристика объемного насоса.
- •64. Типы рабочих цилиндров гидропривода
- •65. Классификация гидромоторов
- •66. Рабочие жидкости гидропривода
- •67. Определите скорость перемещения поршня гидроцилиндра
- •68. Способы регулирования выходного звена гидропривода
- •69. Гидроаппаратура управления, ее назначение
- •70. Уплотнительные устройства, назначение
- •71. Основные рабочие параметры гидродвигателей
- •72. Гидроаккумуляторы, их назначение
18.Трубка Пито, назначение.
Трубка Пито — прибор для измерения динамического напора текущей жидкости или газа. Названа по имени её изобретателя (1732) французского учёного А. Пито.
Представляет
собой Г-образную трубку. Установившееся
в трубке избыточное давление приближённо
равно:
где
—
плотность движущейся (набегающей) среды;
—
скорость
набегающего потока;
—
коэффициент.
Напорная (пневмометрическая, или трубка полного напора) трубка Пито подключается к специальным приборам и устройствам. Применяется при определении относительной скорости и объёмного расхода в газоходах и вентиляционных системах в комплекте с дифференциальными манометрами.
Для жидкостей это устройство обычно используется как МАНОМЕТР, у которого один (открытый) конец направлен навстречу потоку, а другой - выступает из него. За счет разности давлений на двух концах жидкость изменяет положение внутри трубки. Трубка Пито для газов обычно имеет форму буквы L, где один конец открыт и направлен к потоку газа, а другой присоединен к прибору, измеряющему давление. Этот вид трубки Пито часто используется в самолетах в качестве прибора, измеряющего скорость набегающего потока воздуха.
Закон Паскаля.
Основой для гидростатики является закон Паскаля: Воздействие силы на неподвижную жидкость распространяется по всем направлениям внутри жидкости. Величина давления в жидкости равна нагрузке, соотнесенной с площадью, на которую она действует. Давление оказывает свое воздействие всегда вертикально на ограничивающую поверхность резервуара. Кроме того, давление распространяется равномерно во все стороны. Если не принимать во внимание давление силы тяжести, то давление одинаково по величине во всех точках. Учитывая давления, которые используются в современных гидроприводах, влиянием давления силы тяжести можно пренебречь.
10 м водяного столба = 1 бар.
На законе Паскаля основан принцип действия различных гидравлических устройств, с помощью которых давление передается на расстояние. К таким устройствам относятся: гидравлические прессы, гидроподъемники, гидродомкраты, гидравлические аккумуляторы, гидравлические тормозные системы, гидромультипликаторы и др. В качестве примера рассмотрим работу гидравлического пресса. Гидравлический пресс применяют для получения больших сжимающих усилий, что необходимо, например, для деформации металлов при обработке давлением (прессование, ковка, штамповка), при испытании различных материалов, уплотнении рыхлых материалов, в технологических процессах по обезвоживанию осадков и т.д. Принципиальная схема пресса представлена на рис 2.10.
К поршню площадью
F приложена
сила Р1,
которая передается жидкости, создавая
давление р1:
По закону Паскаля
давление передается на поршень площадью
F2,
создавая полезную силу, под действием
которой прессуется материал:
cледовательно
или
Из формулы видно, что отношение усилий на малом и большом поршнях пропорционально квадрату отношения диаметров поршней. Например, если диаметр большого поршня в десять раз больше диаметра малого поршня, то полезное усилие на большом поршне будет в 100 раз больше, чем на малом.