
- •1. История развития науки «Гидравлика и гидропривод»
- •2.Виды жидкостей.
- •3.Силы действующие на жидкость.
- •Плотность жидкости и удельный вес.
- •Чем характеризуется сжимаемость жидкости и газа?
- •Вязкость жидкости, определение.
- •Коэффициент динамической вязкости.
- •8.Коэффициент кинематической вязкости.
- •Гидростатическое давление, определение и его свойства.
- •10.Формула гидростатического давления.
- •11.Понятие идеальной жидкости.
- •12.Элементарная струйка и поток.
- •13.Гидравлические элементы потока.
- •14.Средняя скорость потока и расход.
- •15.Уравнение неразрывности.
- •Пьезометрический напор.
- •17.Скоростной напор, его величина.
- •18.Трубка Пито, назначение.
- •Закон Паскаля.
- •Уравнение покоя жидкости. Уравнение Эйлера.
- •Частные случаи Стационарный одномерный поток
- •21.Эпюра давления жидкости на вертикальную стенку.
- •22.Единицы измерения давления. Абсолютное давления. Вакуум.
- •23.Уравнение д.Бернули для элементарной струйки.
- •24.Классификация видов движения жидкости.
- •Геометрический и энергетический смысл уравнения д.Бернули.
- •26.Режимы течения жидкости. Критерии о.Рейнольдса.
- •29.Напорный и безнапорный поток.
- •30.Гидравлически гладкие и шероховатые трубы.
- •31.Истечение жидкости через малые отверстия и насадки. Формула расхода
- •32.Коэффициент сжатия струи.
- •33.Коэффициент скорости и расхода.
- •34.Классификация трубопроводов.
- •37.Коэффициент гидравлического трения.
- •38.Простой трубопровод, определение.
- •39.Сложные трубопроводы.
- •40.Виды соединений трубопроводов.
- •41.Самотечный трубопровод.
- •42.Общая классификация насосов.
- •43.Напор создаваемый насосом.
- •44.Основные технические показатели насосов
- •45.Характеристика трубопровода
- •46.Подача насоса
- •47.Подводимая мощность к насосу
- •48. Гидравлическая (полезная) мощность насоса
- •49. 0Бъемный к.П.Д. Насоса
- •50. Гидравлический к.П.Д. Насоса
- •52. Общий к.П.Д. Насоса
- •53. Рабочий объем поршневого насоса
- •54. Подача объемного поршневого насоса
- •55. Рабочая характеристика поршневого насоса
- •56.Способы регулирования подачи объемного насоса
- •57. Рабочая (действительная) характеристика центробежного насоса
- •58. Способы регулирования подачи центробежного насоса
- •59. Схемы соединений центробежных насосов при работе на трубопровод
- •60. Классификация роторных насосов.
- •61. Схема поршневого насоса
- •62. Составные части простейшего гидропривода.
- •63. Характеристика объемного насоса.
- •64. Типы рабочих цилиндров гидропривода
- •65. Классификация гидромоторов
- •66. Рабочие жидкости гидропривода
- •67. Определите скорость перемещения поршня гидроцилиндра
- •68. Способы регулирования выходного звена гидропривода
- •69. Гидроаппаратура управления, ее назначение
- •70. Уплотнительные устройства, назначение
- •71. Основные рабочие параметры гидродвигателей
- •72. Гидроаккумуляторы, их назначение
10.Формула гидростатического давления.
сила давления воды на основание:
F = p • S. (1)
F = P – весу жидкости,
F = P = mg, m = • V,
V = S • h.
F = Shg. (2)
Приравниваем
формулы (1) и (2):
Гидростатическое давление можно определить с помощью прибора, называемого гидростатическими весами Паскаля. В подставке П, сквозь которую проходит кольцевой патрубок К, можно поочередно герметично закреплять сосуды С любой формы, не имеющие дна. Подвижным дном этих сосудов служит подвешенная на коромысле равноплечих весов плоская круглая площадка Д, расположенная вблизи нижнего отверстия патрубка К. Эта площадка прижимается к торцу патрубка силой, вызываемой тем, что на чашку весов, подвешенную на другом их коромысле, ставится гиря Г. К подставке П прикреплена линейка Л, по которой определяют высоту h жидкости в сосуде, закрепленном на подставке.
Опыт производят так. На под-ставке укрепляют сосуд, имеющий форму прямого кругового цилиндра. В него наливают воду до тех пор, пока вес этой воды не станет равным весу гири, поставленной на правую чашку весов, т.е. Рж=Рг. (Поддержание этого количества воды автоматически обеспечивается самим прибором, так как если вес воды в сосуде превысит вес гири, дно приоткроется и излишек воды вытечет.)
В цилиндрическом сосуде вес жидкости Pж=rжghS, где ж=rж - плотность жидкости, g - ускорение свободного падения, h - высота столба жидкости, S - площадь основания цилиндра, поэтому на дно сосуда жидкость оказывает давление
р=Pж/S=rжgh.
Формула определяет значение гидростатического давления.
(2.2)
Полученное
уравнение называют основным уравнением.
гидростатики; по нему можно подсчитать
давление в любой точке покоящейся
жидкости. Это давление, как видно из
уравнения, складывается из двух величин:
давления
на
внешней поверхности жидкости и давления,
обусловленного весом вышележащих слоев
жидкости.
11.Понятие идеальной жидкости.
Идеальная жидкость, воображаемая жидкость, лишённая вязкости и теплопроводности. В Идеальная жидкость отсутствует внутреннее трение, то есть нет касательных напряжений между двумя соседними слоями. Такая идеализация допустима во многих случаях течения, рассматриваемых гидроаэромеханикой, и даёт хорошее описание реальных течений жидкостей и газов на достаточном удалении от омываемых твёрдых поверхностей и поверхностей раздела с неподвижной средой. Математическое описание течений Идеальная жидкость позволяет найти теоретическое решение ряда задач о движении жидкостей и газов в каналах различной формы, при истечении струй и при обтекании тел.
12.Элементарная струйка и поток.
Трубкой тока называется трубчатая поверхность бесконечно малого поперечного сечения, образованная системой линий тока, проходящих через точки бесконечно малого замкнутого контура (рис. 3.4).
Жидкость, протекающая внутри этой трубки, называется элементарной струйкой. Элементарная струйка изолирована от окружающей массы жидкости. Очевидно, жидкость не может протекать через боковую поверхность трубки тока, так как на ней un = 0. Совокупность элементарных струек представляет собой поток конечных размеров. Струйная модель потока
жидкости упрощает теоретические исследования движения жидкости. Основные свойства элементарной струйки:
1. Скорость и площади сечений элементарной струйки могут меняться вдоль струйки, скорости же в пределах одного сечения элементарной струйки вследствие малости площадки одинаковы.
2. Жидкость не может протекать через боковую поверхность элементарной струйки, так как на основании определения линии тока в любой точке поверхности элементарной струйки скорость направлена по касательной к поверхности.
Объем жидкости,
проходящей в единицу времени через
данное поперечное сечение струйки,
называется элементарным расходом. За
время dt (рис.
3.5) все частицы из сечения 1-1 переместятся
на расстояние ds
= udt
в сечении
1’–1’. Здесь u
– скорость
движения частиц. Объем жидкости между
сечениями
Расход потока Q - объем жидкости V, протекающей за единицу времени t через живое сечение ω.
За единицу времени проходит количество жидкости в объеме, равном:
Единица измерения м3/с. Массовый расход dG = dQρ = ρudω, кг/с. Весовой расход dGg = dGg = ρgudω, Н/с.