Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
шпора по гидравлике.doc
Скачиваний:
1
Добавлен:
01.03.2025
Размер:
3.69 Mб
Скачать
  1. Вязкость жидкости, определение.

Вязкость представляет собой свойство жидкости сопротивляться сдвигу (скольжению) ее слоев. Это свойство проявляется в том, что в жидкости при определенных усло­виях возникают касательные напря­жения. Вязкость есть свойство, противоположное текучести: более вязкие жидкости (глицерин, смазочные масла и др.) являются менее текучими, и наоборот.

При течении вязкой жидкости вдоль твердой стенки происходит торможение потока, обусловленное вязкостью (рис. 1.3). Скорость v уменьшается по мере уменьшения расстояния у от стенки вплоть до v = 0 при у = 0, а между сдоями происходит проскальзывание, сопровождающееся возникновением касательных напряжений (на­пряжений трения),

Согласно гипотезе, высказанной впервые Ньютоном в 1686 г., а затем экспериментально обоснованной проф. Н. П. Петровым в 1883 г., касательное напряжение в жидкости зависит от ее рода и характера течения и при слоистом течении изменяется прямо пропорционально так называемому поперечному градиенту скорости. Таким образом

(1.18)

где μ — коэффициент пропорциональности, получивший название динамиче­ской вязкости жидкости; dv — приращение скорости, соответствующее прира­щению координаты dy (см. рис. 1.3).

  1. Коэффициент динамической вязкости.

Вязкость - свойство жидкости оказывать сопротивление относительному движению (сдвигу) частиц жидкости. Это свойство обусловлено возникновением в движущейся жидкости сил внутреннего трения, ибо они проявляются только при ее движении благодаря наличию сил сцепления между ее молекулами. Характеристиками вязкости являются: динамический коэффициент вязкости μ и кинематический коэффициент вязкости ν.

Единицей динамического коэффициента вязкости в системе СГС является пуаз (П): 1 П=1 дина·с/см2=1 г/(см·с). Сотая доля пуаза носит название сантипуаз (сП): 1 сП=0,01П. В системе МКГСС единицей динамического коэффициента вязкости является кгс·с/м2; в системе СИ - Па·с. Связь между единицами следующая: 1 П=0,010193 кгс·с/м2=0,1 Па·с; 1 кгс·с/м2=98,1 П=9,81 Па·с.

Согласно гипотезе, высказанной впервые Ньютоном в 1686 г., а затем экспериментально обоснованной проф. Н. П. Петровым в 1883 г., касательное напряжение в жидкости зависит от ее рода и характера течения и при слоистом течении изменяется прямо пропорционально так называемому поперечному градиенту скорости. Таким образом

(1.18)

где μ — коэффициент пропорциональности, получивший название динамиче­ской вязкости жидкости; dv — приращение скорости, соответствующее прира­щению координаты dy (см. рис. 1.3).

Согласно гипотезе, высказанной впервые Ньютоном в 1686 г., а затем экспериментально обоснованной проф. Н. П. Петровым в 1883 г., касательное напряжение в жидкости зависит от ее рода и характера течения и при слоистом течении изменяется прямо пропорционально так называемому поперечному градиенту скорости. Таким образом

(1.18)

где μ — коэффициент пропорциональности, получивший название динамиче­ской вязкости жидкости; dv — приращение скорости, соответствующее прира­щению координаты dy (см. рис. 1.3).

Поперечный градиент скорости dv/dy определяет изменение ско­рости, приходящееся на единицу длины в направлении нормали к стенке и, следовательно, характеризует интенсивность сдвига жидкости в данной точке (точнее dv/dyэто модуль градиента ско­рости; сам градиент — вектор).

Из закона трения (5.11), следует, что напряжения трения возможны только в движущейся жидкости, т. е. вязкость жидкости проявляется лишь при ее течении. В покоящейся жидкости касательные напряжения будем считать равными нулю *.

Изложенное позволяет сделать вывод, что трение в жидкостях, обусловленное вязкостью, подчинено закону, принципиально от­личному от закона трения твердых тел.

Если течение жидкости таково, что имеется еще градиент скоро­сти в направлении, нормальном к плоскости рисунка (см. рис. 1.2), то полную производную в формуле (5.11) надо заменить частной производной dv/dy.

При постоянстве касательного напряжения по поверхности S полная касательная сила (сила трения), действующая по этой по­верхности

Для определения размерности вязкости μ (Па*с) решим уравне­ние (5.11) относительно μ, в результате чего получим