
- •1.Введение. Предмет и задачи курса. Краткая история развития науки о гидравлике и пневматике.
- •5. Гидростатика. Гидростатическое давление и его свойства
- •7) Основное уравнение гидростатики
- •8) Абсолютное и манометрическое давление. Вакуум.
- •9) Равновесие жидкости при относительном покое
- •11) Давление жидкости на криволинейные поверхности.
- •12. Гидродинамика. Основные сведения о движении жидкости.
- •13. Средняя скорость потока. Условие сплошности . Гидравлические элементы потока.
- •14. Основные аналитические методы исследования движения жидкости.
- •15. Уравнение Бернулли для элементарной струйки идеальной жидкости
- •16. Геометрический и энергетический смысл уравнения Бернулли.
- •Энергетический смысл уравнения Бернулли:
- •17. Уравнение Бернулли для потока реальной вязкой жидкости
- •18. Эйлера уравнение
- •19. Режимы движения реальной жидкости
- •20.Гидравлические потери напора при течении жидкости по трубопроводу
- •22. Турбулентное движение жидкости. Распределение скоростей.
- •23. Потери напора при турбулентном движении жидкости по трубопроводу. Способы их определения.
- •24.Применение уравнения Бернулли при истечение жидкости через малые отверстия
- •25) Уравнение состояния газов
- •26. Компрессоры. Основные характеристики работы поршневого компрессора
- •27.Общие закономерности сжатия газов.
- •28. Расчёт заторможенного газа.
- •29. Течение газа в цилиндрической трубе.
- •30.Действительный цикл поршневого компрессора. Многоступенчатое сжатие.
- •31.Общие закономерности сжатия газов.
- •32)Насосы.Класификация насосов.
- •33)Основные технические параметры насосов.
- •34)Центробежные насосы.Устройство и принцип действия.
- •37. Рабочая (действительная) характеристика центробежного насоса
- •38. Общий к.П.Д. Насоса
- •39.Характеристика трубопровода
- •40.) Совместная работа центробежных насосов на трубопроводов.
- •41) Условия подобия лопастных гидромашин.
- •42. Регулирование центробежных насосов
- •43. Классификация объёмных насосов
- •44. Величины, характеризующие рабочий процесс объёмного насоса
- •45. Поршневые насосы. Устройство и принцип действия.
- •46. Кинематический анализ кривошипно-шатунного механизма поршневого насоса
- •47.Мгновенная подача поршневого насоса. Характеристика объемного насоса.
- •48. Роторно-поршневые насосы радиального типа
- •49. Роторно-поршневые насосы аксиального типа
- •50. Шестеренные насосы.
- •51. Шиберные (пластинчатые) насосы.
18. Эйлера уравнение
В гидромеханике-дифференц. ур-ние движения идеальной жидкости в переменных Эйлера. Если давление р, плотность р, проекции скоростей частиц жидкости и, v, w к проекции действующей объёмной силы X, Y,Z рассматривать как ф-ции координат х, у,z точек пространства и времени t (переменные Эйлера), то Э. у. в проекциях на оси прямоуг. декартовой системы координат принимает вид системы ур-ний:
Решение общей задачи гидромеханики в переменных Эйлера сводится к тому, чтобы, зная X, Y,Z, а также начальные и граничные условия, определить u,w,v,p как ф-ции х, у, z и t. Для этого к Э. у. присоединяют ур-ние неразрывности в переменных Эйлера:
В случае баротропной
жидкости, у к-рой плотность зависит
только от давления, 5-м ур-нием будет
ур-ние состояния
(или когда жидкость несжимаема)
19. Режимы движения реальной жидкости
В природе существуют два режима движения жидкости: ламинарный, при котором частицы жидкости в потоке движутся упорядочение в виде несмешивающихся струек или слоев, и турбулентный, при котором частицы жидкости в своем хаотическом движении вдоль потока описывают сложные неупорядоченные траектории, вследствие чего происходит интенсивное перемешивание и частое соударение частиц.
Естественно, что затрата энергии на перемещение определенного количества жидкости вдоль потока будет различна при различных режимах движения. При ламинарном режиме энергия затрачивается только на продольное перемещение частиц жидкости вдоль потока; при турбулентном затрачивается дополнительная энергия на поперечные перемещения частиц жидкости,, связанные с неупорядоченным характером движения.
Поэтому для инженерной практики особенно важно знать, при каком режиме происходит движение частиц жидкости в том или ином потоке.
Осборн Рейнольде предложил установку для экспериментального определения режима движения жидкости. В сосуд наливается вода, которая через открытый раструб 5 горизонтальной стеклянной трубы 6 может выливаться через регулирующий кран 7 на конце трубы. К центру раструба 5 в начальное сечение трубы 6 подводится жидкая краска из сосуда 2 по тонкой трубке 4, с краном 3. Если с помощью крана 7 установить в трубе 6 скорость жидкости меньше некоторого критического значения, то жидкая краска, поступающая из трубки 4 к начальному сечению потока воды, образует в трубе 6 окрашенную нить (тончайшую окрашенную струйку), которая не смешивается с потоком воды по всей длине трубы. Это свидетельствует о ламинарном режиме движения воды в трубе 6.
Если, регулируя краном 7 поток воды в трубе 6, превзойти некоторую критическую величину скорости, то жидкая краска, поступающая в поток, начнет размываться и при достаточно большой скорости равномерно окрасит жидкость в трубе 6. Это будет свидетельствовать о возникновении турбулентного режима. Можно затем, уменьшая скорость воды в трубе, восстановить ламинарный режим движения и т. д.
Установка Рейнольдса позволяет визуально наблюдать режимы движения жидкости, что очень важно для получения правильных физических представлений о происходящих процессах. Однако для инженерной практики очевидно более важным является аналитическое решение задачи определения режимов движения жидкости по некоторым известным параметрам потока. Решение этой задачи основано на применении теории подобия.