
- •1.Введение. Предмет и задачи курса. Краткая история развития науки о гидравлике и пневматике.
- •5. Гидростатика. Гидростатическое давление и его свойства
- •7) Основное уравнение гидростатики
- •8) Абсолютное и манометрическое давление. Вакуум.
- •9) Равновесие жидкости при относительном покое
- •11) Давление жидкости на криволинейные поверхности.
- •12. Гидродинамика. Основные сведения о движении жидкости.
- •13. Средняя скорость потока. Условие сплошности . Гидравлические элементы потока.
- •14. Основные аналитические методы исследования движения жидкости.
- •15. Уравнение Бернулли для элементарной струйки идеальной жидкости
- •16. Геометрический и энергетический смысл уравнения Бернулли.
- •Энергетический смысл уравнения Бернулли:
- •17. Уравнение Бернулли для потока реальной вязкой жидкости
- •18. Эйлера уравнение
- •19. Режимы движения реальной жидкости
- •20.Гидравлические потери напора при течении жидкости по трубопроводу
- •22. Турбулентное движение жидкости. Распределение скоростей.
- •23. Потери напора при турбулентном движении жидкости по трубопроводу. Способы их определения.
- •24.Применение уравнения Бернулли при истечение жидкости через малые отверстия
- •25) Уравнение состояния газов
- •26. Компрессоры. Основные характеристики работы поршневого компрессора
- •27.Общие закономерности сжатия газов.
- •28. Расчёт заторможенного газа.
- •29. Течение газа в цилиндрической трубе.
- •30.Действительный цикл поршневого компрессора. Многоступенчатое сжатие.
- •31.Общие закономерности сжатия газов.
- •32)Насосы.Класификация насосов.
- •33)Основные технические параметры насосов.
- •34)Центробежные насосы.Устройство и принцип действия.
- •37. Рабочая (действительная) характеристика центробежного насоса
- •38. Общий к.П.Д. Насоса
- •39.Характеристика трубопровода
- •40.) Совместная работа центробежных насосов на трубопроводов.
- •41) Условия подобия лопастных гидромашин.
- •42. Регулирование центробежных насосов
- •43. Классификация объёмных насосов
- •44. Величины, характеризующие рабочий процесс объёмного насоса
- •45. Поршневые насосы. Устройство и принцип действия.
- •46. Кинематический анализ кривошипно-шатунного механизма поршневого насоса
- •47.Мгновенная подача поршневого насоса. Характеристика объемного насоса.
- •48. Роторно-поршневые насосы радиального типа
- •49. Роторно-поршневые насосы аксиального типа
- •50. Шестеренные насосы.
- •51. Шиберные (пластинчатые) насосы.
34)Центробежные насосы.Устройство и принцип действия.
Центробежный насос — насос, в котором движение жидкости и необходимый напор создаются за счёт центробежной силы, возникающей при воздействии лопаток рабочего колеса на жидкость.
Состоит из:Вал рабочего колеса,рабочее колесо,спиральный корпус,уплотнение выхода вала из корпуса насоса,всасывающий патрубок,нагнетательный патрубок.
Жидкость залитая в насос перед его пуском при вращении рабочего колеса увлекается ллопатками и под действем центробежной силы,а так же сил Кариолиса движется от центра колеса к его переферии по каналам образованным лопатками и через спиральный корпус подаётся в нагнетательный трубопровод, в следствии этого во всасывающем патрубке создаётся разряжение под действием которого жидкость из резервуара подаётся в насос.
37. Рабочая (действительная) характеристика центробежного насоса
В характеристике центробежного насоса (рис. 2.8.) указано изменение напора Н, мощности N, потребляемой насосом, и КПД η в зависимости от подачи Q насоса при неизменной частоте вращения вала.
Режим работы насоса с наибольшим КПД называют оптимальным (Qопт). Область в пределах изменения подачи при небольшом снижении КПД (Q1, Q2) называют рабочей. Насос рекомендуется применять в пределах этих параметров.
Теоретический напор насоса (HТ∞) при бесконечном числе лопаток изменяется линейно в зависимости от изменения подачи. Действительно, с изменением подачи меняется только величина скорости сu2∞ прямо пропорциональная количеству жидкости, проходящей через каналы рабочего колеса. Таким образом, напор HТ∞ как функция от подачи представляется прямой линией (см. рис. 2.8.).
При переходе к реальному насосу напор уменьшается, что обусловлено потерями в связи с конечным числом лопаток (на рис. 2.8. заштрихованная зона 1), потерями напора в каналах насоса (зона 2), потерями на входе в колесо, переходе в отвод и в отводе (зона 3).
Напор насоса обычно наибольший при нулевой подаче на режиме, который называется режимом закрытой задвижки. У некоторых насосов наибольший напор не совпадает с нулевой подачей. Характеристика такого насоса показана на рис. 2.8. пунктиром. Здесь, в области малых подач, работа насоса будет неустойчивой, так как напор не определяет однозначно количество подаваемой жидкости (при одной и той же величине напора может быть подача большая и меньшая).
Нулевому напору насоса всегда соответствуют нулевой КПД и наибольшая подача насоса, так называемая работа насоса на излив, т. е. без преодоления полезных сопротивлений. Мощность, потребляемая насосом при нулевой подаче или нулевом напоре, не равна нулю, так как при этих режимах имеются потери на дисковое трение, рециркуляцию жидкости у входа и выхода из колеса, механические и объемные потери (утечка).
Запуск центробежного насоса производится в режиме закрытой задвижки, так как при этом наименьшая мощность потребляемая насосом, а следовательно и минимальный пусковой ток на обмотке электродвигателя.
38. Общий к.П.Д. Насоса
КПД насоса есть отношение полезной мощности к мощности, потребляемой насосом
(2.8)
Подобно тому, как
это принято для лопастных насосов, для
объемных насосов различают гидравлический
,
объемный
и механический
КПД, учитывающие три вида потерь энергии:
гидравлические — потери напора
(давления), объемные — потери на
перетекание жидкости через зазоры, и
механические — потери на трение в
механизме насоса:
(2.9)
(2.10)
(2.11)
где
—
индикаторное давление, создаваемое в
рабочей камере насоса и соответствующее
теоретическому напору в лопастном
насосе;
— потери мощности на трение в механизме
насоса;
— индикаторная мощность, сообщаемая
жидкости в рабочей камере и соответствующая
гидравлической мощности в лопастных
насосах.
Умножим и разделим
уравнение (2.7.8) на
и произведем перегруппировку множителей.
Получим
(2.12)
т. е. КПД насоса (общий) равен произведению трех частных КПД — гидравлического, объемного и механического.
КПД поршневых насосов зависит от размеров насоса и его конструкции, рода подаваемой жидкости и главным образом от развиваемого им давления. При давлении до 10 МПа η=0,9-0,92; при давлении 30-40 МПа η=0,8-0,85; при этом снижении КПД с увеличением давления зависит не только от конструкции насоса, но и от модуля упругости подаваемой жидкости, который снижается благодаря пузырькам газов.