Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
1 Матрицы и действия над ними.docx
Скачиваний:
2
Добавлен:
01.03.2025
Размер:
1.66 Mб
Скачать

18.Выражение смешанного произведения векторов.

19.Плоскость в трехмерном пространстве и ее уравнение.

20.Взаимное расположение двух плоскостей.

Возможны два случая взаимного расположения двух плоскостей в пространстве:

Параллельны

Пересекаться

Опр. Две плоскости в пространстве называются параллельными, если они не пересекаются, в  противном случаи они пересекаются.

Теорема1: Если две пересекающиеся прямые одной плоскости соответственно параллельны двум прямым другой плоскости, то эти плоскости параллельны.

Доказательство:

Пусть  и - данные плоскости, а1 и а2 - прямые в плоскости , пересекающиеся в точке А, в1 и в2 - соответственно параллельные им прямые в

плоскости . Допустим, что плоскости  и  не параллельны, т.е. пересекаются по некоторой прямой с. По теореме прямые а1 и а2, как параллельные прямым в1и в2, параллельны плоскости , и поэтому они не

пересекают лежащую в этой плоскости прямую с. Таким образом, в плоскости  через точку А проходят две прямые (а1 и а2) , параллельные прямой с. Но это невозможно по аксиоме параллельных. Мы пришли к противоречию ЧТД.

Перпендикулярные плоскости: Две пересекающиеся плоскости называются перпендикулярными, если третья плоскость, перпендикулярная прямой пересечения этих плоскостей, пересекает их по перпендикулярным прямым.

Теорема2: Если плоскость проходит через прямую, перпендикулярную другой плоскости, то эти плоскости перпендикулярны.

Доказательство:

Пусть  - плоскость, в -перпендикулярная ей прямая,  - плоскость, проходящая через прямую в, с - прямая, по которой пересекаются плоскости  и . Докажем, что плоскости  и  перпендикулярны. Проведем в плоскости  через точку пересечения прямой в с плоскостью  прямую а,

перпендикулярную прямой с. Проведем через прямые а и в плоскость . Она перпендикулярна прямой с, т.к. прямая с перпендикулярна прямым а и в. Т. к. прямые а и в перпендикулярны, то плоскости  и  перпендикулярны. ч.т.д.

21. Прямая в трехмерном пространстве и ее уравнение.

22.Взаимное расположение двух прямых.

Взаимное расположение двух прямых и пространстве характеризуется следующими тремя возможностями.

Прямые лежат в одной плоскости и не имеют общих точек — параллельные прямые.

Прямые лежат и одной плоскости и имеют одну общую точку — прямые пересекаются.

В пространстве две прямые могут быть расположены еще так, что не лежат ни в одной плоскости. Такие прямые называются скрещивающимися (не пересекаются и не параллельны).

Теорема. Если одна из двух прямых лежит в некоторой плоскости, а другая пересекает эту плоскость и точке, которая не лежит на первой прямой, то эти прямые скрещиваются.

На рис. 26 прямая a лежит в плоскости , а прямая с пересекает   в точке N. Прямые a и с — скрещивающиеся.

Теорема. Через каждую из двух скрещивающихся прямых проходит только одна плоскость, параллельная другой прямой.

На рис. 26 прямые a и b скрещиваются. Черен прямую а проведена плоскость   || b (в плоскости   указана прямая a1 || b).

Примеры скрещивающихся прямых: трамвайный рельс и троллейбусный провод по пересекающейся улице, нeпересекающиеся и непараллельные ребра пирамид или призм и пр. Все три случая можно видеть еще на примере прямых, по которым встречаются стены и потолок или стены и пол комнаты.

23.Взаимное расположение прямой и плоскости.

24.Прямая на плоскости и ее уравнение