
- •1.Установившееся движение жидкости в напорных трубопроводах
- •3. Понятие коротких и длинных трубопровод. Простой трубопровод постоянного диаметра.
- •4. Простой трубопровод. Случай истечений жидкости под уровень. Окончательные расчётные зависимости(?)
- •5.Особые случаи простоготрубопровода: сифон
- •7. Длинные трубопроводы. Истечение под уровень и в атмосферу.
- •12, Неустановившееся напорное движение жидкости. Гидравлический удар с учетом сжимаемости жидкости и упругими стенками трубопровода. Предварительные указания.
- •13 Расчетные зависимости для величины гидравлического удара и скорости его распространения.
- •14, Прямой (начальный) и отраженный гидравлические удары.
- •16. Истечение жидкости из малого отверстия в тонкой плоской стенке при постоянном напоре в атмосферу.
- •17.Типы сжатия струи. Коэффициенты φ, ξ ε,μ для малого отверстия при истечении в атмосферу, инверсия струи. Траектория струи.
- •18. Истечение из малого отверстия под уровень. Понятие малого и большого отверстий.
- •19.Типы насадков. Общая картина движения жидкости при истечении в атмосферу из насадка Вентури.
- •И стечение из внешнего круглоцилиндрического насадка в атмосферу. Расчетные зависимости для q и vb. Численные значения коэффициентов φ, ξ ε, μн.
- •21.Сопоставление истечения жидкости через отверстие в тонкой стенке с истечением через насадок Вентури. Величина вакуума. Работа короткой трубы.
- •22. Истечение в атмосферу или под постоянный уровень жидкости при переменном напоре.
- •23. Истечение газов из отверстий.
- •24. Относительное движение тела и жидкости. Общие сведения.
- •25. Сопротивление давления при обтекании жидкостью твердого тела.
- •27. Давление ветра на здание и сооружение.
- •28. Сопротивление трение. Пограничный слой.
- •30.Равномерное безнапорное установившееся движение воды в каналах.Предварительные замечания.
- •31.Гидравлические элементы живого сечения потока в канале.
- •32. Гидравлически наивыгоднейший поперечный профиль трапециидального канала.
- •33. Основные задачи при расчете трапециидальных каналов на равномерное движение воды.
- •34. Ограничение скорости движения воды при расчёте каналов.
- •35. Основные указания о моделировании гидравлических явлений.
- •36. Понятия о подобии гидравлических явлений.
- •37. Основы теории физического моделирования гидравлических явлений. Общие указания.
- •38. Критерии динамического подобия.
7. Длинные трубопроводы. Истечение под уровень и в атмосферу.
Рассмотрим 2 случая:
1.истечение под уровень из длинных трубопроводов.
Чем больше скорость
в трубе, тем больше потери напора, а
следовательно и величина I.
Поэтому при
пьезометрический уклон
должен быть больше пьезометрического
уклона
.
Разность горизонтов жидкости в сосудах
z
при истечении под уровень равен потери
напора, т.е
Где
соответственно потери напора по длине
в 1-ой, 2-ой и 3-ей трубах.
В длинных трубах потери напора по длине определяются по формуле:
Где
-
расходная характеристика, определяемая
по специальным таблицам в зависимости
от диаметра труб.
1.истечение в атмосферу.
µ- коэффициент расхода насадки, определяющийся по специальным таблицам.
ω – площадь живого сечения насадки.
8. Последовательное и параллельное соединение труб.
Последовательное соединение.
При последовательном соединении потеря напора суммируется по участкам труб от сечения А до В.
,
-
потери по длине в трубе 1, 2, 3.
Параллельное соединение труб.
В этом случае складывать потери нельзя.
Рассмотрим следующую схему.
Как видно потери напора во всех трубах соединенных параллельно одинаковы. Для потерь напора по длине при параллельном соединении можно записать:
=
12, Неустановившееся напорное движение жидкости. Гидравлический удар с учетом сжимаемости жидкости и упругими стенками трубопровода. Предварительные указания.
Будем рассматр напорное движение жидкости в случае когда учитывается ее сжимаемость, причем стенки трубопровода считаются неабсолютно жесткими( упругими, деформирующимися.) Гидравлическим ударом называется повышение или понижение гидромеханического давления в напорном трубопроводе, вызванное изменением во времени (в каком-либо сечении трубопровода) средней скорости движения жидкости. Явление гидравлического удара обусловливается инерцией той массы жидкости, заключенной в трубопроводе, скорость которой изменяется во времени. Гидравлический удар в трубопроводе может достигать большой силы.. Поэтому при расчете толщины стенок трубопроводов приходится учитывать величину гидравлического удара. Положим, что мы имеем трубу, на конце которой установлен кран , Жидкость, находящаяся в трубе, будучи остановлена закрытием крана, благодаря своей инерции окажет большое давление на закрытый кран.Если при рассмотрении такого явления пренебрежем сжимаемостью жидкости и деформируемостью стенок трубы, то при этом получим в трубе так называемый «абсолютно жесткий»,удар что, как показывает опыт, вовсе не отвечает действительности. На характер явления гидравлического удара оказывают большое влияние сжимаемость жидкости и деформируемостью стенок трубопровода. Благодаря этим обстоятельствам в трубопроводе при закрытии или открытии крана получается упругий удар, В случае упругого удара давление вдоль трубопровода распространяется волнами, причем эти волновые явления оказываются весьма резко выраженными, и с ними необходимо считаться.
О
писание
явления гидравлического удара.
Представим горизонтальную трубу Т, наполненную жидкостью, и в нее введен поршень Пр.
Если
жидкость и поршень неподвижны, то при
этом в жидкости всюду будет некоторое
давление, определяемое горизонтальной
пьезометрической линией Р'-Р".
Если представить, что поршень в некоторый
момент t
=
0 начал
мгновенно двигаться со скоростью v
, то в случае абсолютно несжимаемой
жидкости и абсолютно жестких стенок
трубопровода, жидкость также начнет
двигаться с той же скоростью v
по
всей длине трубопровода. Если
жидкость сжимается и упругие стенки
трубопровода, картина другая. В этом
случае поршень Пр,
приведенный
в движение, будет выводить жидкость,
находящуюся в трубе , из состояния покоя
постепенно. Такое положение обусловливается,
с одной стороны, сжимаемостью жидкости
и упругостью стенки трубопровода и, с
другой, наличием сил инерции
жидкости.
Для некоторого момента времени t`
(после
начала движения поршня) будем иметь
граничную вертикаль W—W,
которая
разделяет жидкость, заполняющую трубу,
на два разных объема: а) объем левее
вертикали W—W;
здесь
жидкость находится еще в состоянии
покоя, и давление в этой жидкости то же,
что было до начала движения поршня, т.
е. равное
;
б
)
объем правее вертикали W—W;
здесь
жидкость находится уже в состоянии
движения. причём, скорость движения
жидкости в любом живом сечении v=
скорости движения поршня. По мере
движения поршня влево со скоростью
v,
вертикаль W—W
движется влево со скоростью с, причем
с значительно большей v.
Область жидкости Б,
можно
назвать зоной возмущения
или зоной упругой деформации жидкости;
скорость с
—
скоростью распространения возмущения
или скоростью распространения упругой
деформации жидкости.Как видно из
соотношения c>>v
длина
области
возмущения
Б
с
течением времени должна расти: расстояние
между поршнем
и
границей W—W
должно
изменяться от 0 до сколь угодно большой
величины.Зона
возмущения Б имеющая подвижную границу
W—Wt
характеризуется
следующими обстоятельствами:
1)
гидродинамическое
давление внутри этой зоны оказывается
всюду повышенным на величину, измеряемую
высотой hуд:
;
где,
-
пьезометрическая высота ,соответствуящая
области Б,
-пьезометрическая
высота до начала движения поршня.
Эпюра hуд- вертикально заштрихованный прямоугольник, выражающий волну повышения давления. «Лоб» ab этой волны вместе с вертикалью W_W движется влево со скоростью с, Поэтому скорость с можно рассматривать, как скорость распространения в трубопроводе повышенного давления;
2)
в зоне возмущения Б,
сжатие
жидкости оказывается относительно
большим (повышается плотность), а упругие
стенки трубопровода раздавшимися на
некоторую величину
r.
Описанная
картина получается при движении поршня
в трубе, наполненной покоящейся жидкостью.
Совершенно тождественная картина
получается в случае, когда жидкость
движется в трубе со скоростью v,
причем
в некоторый момент времени t
=
0 мы мгновенно перекрываем данную трубу
задвижкой. Здесь в момент t=0
у задвижки зарождается зона возмущения
Б,
и
граница W—W
этой
зоны начинает перемещаться со скоростью
v
вдоль
трубы. Такой случай возможен при полностью
закрытой задвижки.
На
этом чертеже изображено частичное
прикрытие задвижки, когда скорость v
в
конце трубы уменьшается не до нуля, а
до величины, равной
.
В
случае открытия задвижки, когда скорость
получается равной
.
Картина такая же ,однако труба в этом
случае сжимается здесь
возникает волна понижения
давления и скорость ее
распространения
с.При
рассмотрении гидравлического удара
полезно
иметь
в
виду
следующую аналогию. Представим
себе обычную спиральную пружину, имеющую
большую длину.
Пусть эта пружина падает вертикально
вниз . после того как пружина коснулась,
горизонтальной плоскости, получим
картину.
явление гидравлического удара характеризуется двумя основными величинами: 1,приращением давления hуд («+» или «-»), дающим величину гидравлического удара;
2,скоростью с распространения возмущений, т. е. скоростью распространения гидравлического удара . определяем эти величины