Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
konspekt_po_elektronike.doc
Скачиваний:
0
Добавлен:
01.03.2025
Размер:
5.72 Mб
Скачать

Фазовое управление тиристора:

Фиксируется момент прохождения через ноль переменного анодного напряжения и через время, регулируемое относительно этого момента, на управляющий электрод подается управляющий импульс. Изменяя это время, мы изменяем средний ток через нагрузку от 0 до максимума. Т.к. тиристор либо открыт, либо закрыт, рассеивание мощности не происходит и КПД стремится к 1.

Использование тиристоров на постоянном токе:

Подачей напряжения на УЭ VD1 отпираем его. Конденсатор заряжается в указанной полярности. Затем подаем напряжение на УЭ VD2, он отпирается, и напряжение на конденсаторе запирает VD1.

Ток конденсатора должен быть больше тока удержания, чтобы тиристор закрылся. VD2 запирается за счет выбора R2 такой величины, чтобы ток анода VD2 был меньше тока удержания. Длительность формируемого импульса определяется Rн, L, C.

Динисторы имеют нормированное напряжение включения анод – катод.

У тринисторов есть управляющий диод, подачей напряжения на который мы можем включать тиристор при любом напряжении на аноде. Однако триодный тиристор не предназначен для включения напряжения анод – катод, более того это опасно => для него Uвкл – напряжение, при котором он будет гарантированно закрыт при нулевом напряжении управления.

Биполярные транзисторы (БПТ). Электрические и эксплуатационные параметры. Входные, выходные и проходные характеристики. Схемы замещения транзистора и их дифференциальные параметры. Статистические характеристики (h-параметры) БПТ. Схемы включения БПТ (с общим эмиттером, общим коллектором, общей базой). Их сравнительный анализ и области применения. Уравнение Эберса-Молла, температурный коэффициент тока коллектора, внутреннее сопротивление эмиттера, максимальный коэффициент усиления по напряжению эффект Эрли, эффект Миллера

Биполярные транзисторы (БПТ) – это активные п/п приборы с двумя p – n переходами и тремя электродами.

Отличительный признак: для обеспечения нормальной работы необходимы носители двух видов - электроны и дырки.

Используются два встречно включенных p – n перехода. Бывают двух типов:

n2 и p2 – сильно легированные области.

э

-

– инжективные носители;

к – собирает;

б – барьер;

n+ - более сильно легирован.

Диффузионная длина равна произведению средней скорости движения заряда на время жизни (время между генерацией и рекомбинацией).

Прямосмещенный эмиттерный p-n-переход ускоряет электроны из эмиттера в базу. Если база(W) узкая – меньше диффузионной длины – и электрон не успевает рекомбинировать в базе, он пролетает через базу в коллектор, ускоряясь положительным напряжением коллектора. Изменяя прямое напряжение эмиттер-база , мы изменяем количество электронов, впрыскиваемых в базу из эмиттера, а значит и ток коллектора. Носители заряда, не успевшие пролететь базу и рекомбинировавшие, создают ток базы.

В транзисторе, находящемся в активном состоянии, переход эмиттер-база, эмиттерный переход, смещен в прямом направлении, т.е. приоткрыт, а коллекторный переход закрыт.

В усилительном режиме работы транзистора, эмиттерный переход смещен в прямом направлении, коллекторный - в обратном. Эмиттерный переход сильно легирован, коллектор - обеднен. Коллекторный переход должен быть равномерно легирован и в меньшей степени, чем эмиттер, с целью увеличения пробивного напряжения коллектор-база.

Iэ = Iк+Iб (Так как ток коллектора во много раз больше тока базы, то токи эмиттера и коллектора приближенно равны).

Статические характеристики:

где - обратный ток эмиттерного перехода;

- тепловой потенциал транзистора;

где - постоянная Больцмана;

- температура;

- заряд электрона.

В диодах не соблюдается условие широкой базы, поэтому два диода нельзя использовать как транзистор.

Схемы включения БПТ

Для усилителей напряжения используется режим класса А, в котором с щелью обеспечения максимальной линейности усиления рабочая точка (Uэб0, Iк0) выбирается в середине квазилинейного участка проходной характеристики.

Схема с ОБ:

Рабочая точка задается делителями R1 и R2.

Uбэ = Uб - Uэ

Uк = Uп - URк

Схема с общей базой не инвертирует фазу сигнала, имеет коэффициент усиления по току h21 < 1, (т к отношение тока коллектора к току эмиттера меньше единицы), коэффициент усиления по напряжению во много раз превышает единицу:

–– зависит от сопротивления источника сигнала.

Входное сопротивление мало. Оно определяется низким сопротивлением прямосмещенного эмиттерного p-n-перехода.

Выходное сопротивление высоко. Оно определяется высоким сопротивлением обратносмещенного коллекторного p-n-перехода.

С1 и С2 необходимы для разделения усилительного каскада с генератором и нагрузкой для исключения протекания через них постоянного тока. СБ необходимо для сглаживания пульсации переменного сигнала и поддержания постоянного напряжения на базе.

Схема с общей базой используется для усиления высокой частоты на СВЧ и УВЧ (т.к. в ней отсутствует эффект Миллера) и в составе каскодных схем (в том числе и в дифференциальном каскаде).

Каскод - два или более усилительных элемента с гальванической связью, выполняющих роль одного усилительного каскада.

Каскад – независимая усилительная ячейка, которую можно выделить из схемы и обозначить ее свойства.

Недостаток: низкое входное и высокое выходное сопротивление, отсутствие усиления по току.

Достоинства: не инвертируемая фаза.

Схема включения транзистора с общим эммитером. (общий электрод для входного и выходного сигнала)

Включая конденсатор Сэ || R, мы шунтируем R по переменному току, т.е. делаем переменный потенциал эмиттера равным нулю, позволяет добиться от каскада более высокого коэффициента усиления.

Rвх относительно мало вследствие малого сопротивления открытого эмиттерного p – n перехода, однако больше чем RОБ вследствие действия последовательной отрицательной обратной связи (ООС) в эмиттерной цепи.

Rвых – высокое выходное сопротивление определяется высоким сопротивлением замкнутого p – n перехода.

Rэ выбирается из диапазона (0.1 – 0.3)Rк для осуществления температурной стабилизации режима работы каскада. Включение Сэ позволяет снять это ограничение на Кu на рабочих частотах, т.е. xсэ<<Rэ и xсэ < rэ0. Для переменного тока его влияние ограничено уменьшением максимальной амплитуды неискажённого выходного сигнала. С1 и С2 предназначены для разделения источника сигнала и усилителя, а так же усилителя и нагрузки, с целью исключения протекания через источник сигнала и нагрузку постоянного тока из цепи транзистора и не допущение повреждения и некорректной работы источника сигнала и нагрузки, а также нарушение работы транзистора.

Делитель напряжения R1 и R2 предназначен для задания положения рабочей точки транзистора проходной характеристики (Uбэ0).

Достоинства каскада с общим эмиттером: высокие коэффициенты по току h21 и напряжению (десятки, сотни), более высокие (по сравнению с ОБ) Rвх = h21(R+rэ0), относительно высокое Rвх.

Недостатки: высокое Rвых, инвертирование сигнал (способствует возникновению самовозбуждения и уменьшает коэффициент усиления на высоких частотах вследствие эффекта Миллера), зависимость Кu от Rн: ,

Наличие эффекта Миллера, который заключается в увеличении эквивалентной емкости Скб в Кu раз. Это приводит к резкому падению усиления каскадов на высоких частотах и необходимости применения каскадов с ОБ.

Сф обеспечивает эквипотенциальность по переменному току шины питания и общей шины.

1)Rвход определяется совместным действием низкого сопротивления открытого эмиттерного p-n перехода и увеличивающего это сопротивление действием последовательного ООС по току через R’э и R”э. Rвх=(Rэ’// Rэ’’+rэо) .

2)высокое выходное сопротивление определяется высоким сопротивлением запертого коллекторного p-n перехода.

Rвых=Rвых тр //Rк ==Rк

3)Ri=h21=∆Iк/∆Iб (характерный параметр. Не зависит от схемы включения!)

Применение: предварительные, промежуточные и предвыходные каскады

Схема включения транзистора с общим коллектором (эмиттерный повторитель).

Uб=Uэ+0,6

Коэффициент усиления по напряжению стремится к единице (но всегда меньше).

Коэффициент усиления по току:

Ku=

Rвх = (Rэ+rэо)h21

Uб = Uэ

IбRвх=Iэ(Rэ+rэо)

φ = 0;

Достоинства: отсутствие эффекта Миллера, отсутствие зависимости Кu от Rн.

Недостатки: отсутствие усиления по напряжению.

Используется во входных каскадах для согласования с высоким сопротивлением источника сигнала; в промежуточных каскадах для согласования, особенно с высоким выходным сопротивлением источников тока, в выходных каскадах для согласования с низким сопротивлением нагрузки и потому, что его коэффициент не зависит от сопротивления нагрузки.

Сравнительный анализ схем включения транзистора

Параметр

ОЭ

ОБ

ОК

Rвх

100Ом – 1кОм

1 – 10Ом

10 – 100кОм

Rвых

1 – 10кОм

100кОм – 1Мом

100Ом – 1кОм

Кi

10 – 100

<1(близко)

10 – 100

КU

10 – 100

10 – 100

<1(близко)

Кp

100 – 10000

10 – 100

10 – 100

Φ

π

0

0

Схемы замещения транзистора и их дифференциальные параметры

Статические характеристики биполярного транзистора, h-параметры

Параметры транзисторов являются величинами, характеризующими их свойства.

Все параметры можно разделить на собственные (первичные) и вторичные.

Собственные параметры характеризуют свойства самого транзистора независимо от схемы его включения. К ним относятся: rэ – сопротивление эмиттера, rк – сопротивление коллектора, rб – сопротивление базы. Значения сопротивлений рассматриваются по отношению к переменной составляющей.

С учетом этих параметров транзистор, включенный по схеме с ОЭ, может быть представлен эквивалентной схемой.

Схема замещения:

Генератор тока отражает усилительные свойства

схемы, а уменьшение коллекторного сопротивления на 1-α – тот факт, что к эмиттерному переходу прикладывается часть напряжения Uкэ.

Статическими характеристиками транзисторов называют графики, выражающие функциональную зависимость между токами и напряжениями транзистора.

Статическими характеристиками являются статический коэффициент передачи тока эмиттера α и статический коэффициент передачи тока базы β.

С точки зрения системы вторичных параметров транзистор рассматривают как некоторый четырехполюсник со следующей схемой замещения.

Эквивалентная схема с h-параметрами:

1) Входное сопротивление при коротко замкнутом выходе при , к.з. на выходе по переменному току, .

2)Коэффициент обратной связи по напряжению при х.х. на входе, . Этот коэффициент показывает, какая доля выходного переменного напряжения передается на вход транзистора вследствие отрицательной обратной связи в нем.

3) Усиление тока при к.з. на выходе по переменному току , при , .

Показывает коэффициент усиления переменного тока транзистором в режиме работы без нагрузки.

4) Выходная проводимость при х.х. на входе , при , – часто используют выходное сопротивление.

Представляет собой внутреннюю проводимость для переменного тока между выходными зажимами транзистора.

Эффект Эрли

Эффект Эрли заключается в том, что изменение напряжения между коллектором и эмиттером влечет изменение напряжения между базой и эмиттером.

Эффект Миллера

У силитель обладает некоторым коэффициентом усиления по напряжению Кu, следовательно, небольшой сигнал напряжения на входе порождает на коллекторе сигнал, в Кu раз превышающий входной (и инвертированный по отношению к входному). Волна проходит через конденсатор, попадает на базу и уменьшает входной сигнал. Из этого следует, что для источника сигнала емкость Скб в (Кu +1) раз больше, чем при подключении Скб между базой и землей. Эффект Миллера часто играет основную роль в спаде усиления, так как типичное значение емкости обратной связи около 4 пкФ соответствует (эквивалентно) емкости в несколько сотен пикофарад, присоединенной на землю.

Униполярные (полевые) транзисторы (ПТ). Принцип действия ПТ с p-n-переходом. Стоковая (выходная) и стоко-затворная (проходная) характеристики ПТ, основные параметры. ПТ металл – диэлектрик – полупроводник (МДП) и металл – окисел – полупроводник (МОП) со встроенным и индуцированным каналами, конструкция, характеристики и параметры. Полярность подаваемых напряжений и особенности применения ПТ. Схемы включения ПТ с общим истоком (ОИ), общим стоком (ОС), общим затвором (ОЗ). Сравнительный анализ БПТ и ПТ. IGBT транзисторы

Полевые транзисторы (униполярные) - п/п приборы, в которых прохождение тока обусловлено дрейфом носителей заряда одного знака под действием продольного электрического поля.

С точки зрения носителя заряда их называют униполярные (одной полярности).

С точки зрения управления электрическим полем - полевыми.

ПТ содержит 3-и п/п области одного и того же типа проводимости, называемые истоком, каналом, стоком.

Движение носителей заряда начинается от истока в направлении стока по каналу, ширина которого зависит от приложенного напряжения к затвору, соответственно ПТ имеет при электрода Исток, Сток и Затвор.

Различают схемы включения:

- с общим истоком (подобно общему эмиттеру) которые позволяют получить усиление тока и напряжения и инвертирование фаз напряжения при усилении, имеют очень высокое входное и выходное сопротивления;

- с общим стоком (подобно общему коллектору и эмиттерному повторителю и может быть назван истоковым повторителем) имеет коэффициент усиления по напряжению, стремящийся к единице, выходное напряжение по значению и фазе повторяют входное, имеют очень высокое входное и низкое выходное сопротивления;

- с общим затвором (подобно общей базе)не дает усиления тока и поэтому усиление мощности в ней во много раз меньше, чем в схеме с ОИ, входное сопротивление мало, в усилителях не используются, применяется в качестве линейных ключей и электронных потенциометров.

Отличие биполярных от полевых транзисторов: практически бесконечное входное сопротивление, несколько худшие усилительные свойства, лучшие температурные характеристики, возможность параллельного включения с целью увеличения тока, опасность повреждения статическим напряжением.

По способу создания канала различают ПТ с p-n-переходом (канал p- или n-типа), встроенным каналом (МДП) и индуцированным каналом (МОП).

ПТ с управляющим р-n переходом содержит три п/п области одного и того же типа проводимости, называемые истоком - каналом - стоком.

Область p – n перехода не содержит подвижных носителей, а значит ее сопротивление очень велико. Подавая на p « - ››, на n « + ››, мы увеличиваем ширину перехода и уменьшаем ширину канала, по которому проходит ток от И к С.

Движение носителей заряда начинается от истока в направлении стока по каналу, ширина которого зависит от напряжения, приложенного к затвору. Соответственно имеет 3 электрода: затвор, сток и исток. р-n переход является высокоомной областью неподвижных носителей заряда –ионов.

Подавая на затвор запирающее напряжение (в нашем случае "-") мы увеличиваем ширину р-n переходов и соответственно уменьшаем ширину канала и увеличиваем его сопротивление.

Резистор автоматического смещения служит для автоматического создания напряжения смещения. При его увеличении возможно полное запирание. Сопротивление в цепи затвора необходимо для заряда конденсатора.

При подаче на затвор отпирающего напряжения > 0,5В происходит отпирание р-n-перехода, возникает ток затвора и ПТ теряет основное своё преимущество: высокое входное сопротивление.

Ic

О сновные характеристики:

  • начальный ток стока

  • н

    Iс нач

    апряжение отсечки

  • крутизна

10мкА

Uзи

Uзи отс

0.6 B

Достоинство ПТ:

  1. высокое входное сопротивление, которое определяется величиной токов утечки запертого p – n перехода;

МДП (МОП) ПТ

В p подложке дырки являются основными носителями, электроны – неосновными. Если к затвору приложить положительное напряжение, неосновные носители притянутся этим напряжением и будут скапливаться под затворной областью. При достаточном напряжении на затворе количество под затвором окажется достаточным для создания канала между И и С и создания пути для протекания между ними тока. При дальнейшем увеличении напряжения на затворе количество под затвором увеличится, ширина канала будет расти, сопротивление уменьшится, что вызовет увеличение тока стока.

При приложении к затвору напряжения положительной полярности определенной величины, в области подложки (наиболее близко расположенная к затвору), под диэлектриком, образуется канал из неосновных носителей зарядов электронов. Для него характерно ещё большее входное сопротивление, но меньшее усиление, так как управляющий затвор находится на большем расстоянии от канала.

Если между И и С встроить канал, получим МОП ПТ со встроенным каналом.

МОП со встроенным каналом.

При подаче положительного напряжения увеличиваем ширину канала, и ток по нему тоже увеличивается. При подаче отрицательного напряжения уменьшаем ширину канала и ток по нему, вплоть до полного закрытия транзистора.

«+» возможность работы без начального смещения

«-» протекание тока при наличие U3 = 0.

Чтобы р-п переходы были надёжно заперты относительно подложки (П), мы подаём на П напряжение, противоположное полярности по отношению к напряжению на стоке, т.е. для п - канала это будет "-". В обычных случаях соединяем П и U

КМОП - комплементарные МОП с п и р переходом.

«+» отрицательный температурный коэффициент мощности, т.е. при нагреве ток стока уменьшается.

ПТ n - типа с p - n переходом не рекомендуется использовать при комбинации больших (20-50В) напряжений на затворах и относительно больших (> 1 мА) тока стока, из-за резкого возрастания тока затвора.

Достоинства ПТ: высокое входное сопротивление. Положительный ТКС, т.е. при увеличении температуры ток падает, т.е. они не требуют дополнительных мер по защите от саморазогрева.

Недостатки: более низкое, по сравнению с БПТ, усиление по напряжению.

Широко используется в КМОП-логике и для коммутации больших токов и напряжений в импульсных блоках питания и прочих силовых низковольтных ключах.

Сравнение ПТ и БПТ:

Достоинства ПТ:

1. высокое и очень высокое Rвх;

2. отрицательный температурный коэффициент тока стока, что позволяет не применять дополнительных мер для температурной стабилизации в усилительных каскадах в режиме АВ;

3. отсутствие вторичного пробоя высоковольтных МОП ПТ;

4. область безопасной работы ограничена максимальной рассеиваемой мощностью, максимальным током стока.

Недостаток ПТ: худшие усилительные свойства по сравнению с БПТ.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]