
- •1 Глухие муфты. Смещение валов. Жесткие компенсирующие муфты. Основные свойства упругих муфт.
- •1 Задачи курса «ок и дм». Основные определения. Объекты изучения в курсе «ок и дм».
- •3 Конические зубчатые передачи. Основные геометрические соотношения. Эквивалентное колесо. Силы в зацеплении.
- •4 Кпд червячной передачи. Силы в зацеплении.
- •5 Напряжение в ремне. Скольжение ремня.
- •7 Общие сведения о соединениях. Классификация соединений Сравнительный анализ соединений.
- •8 Общие сведения о резьбовых соединениях. Метрическая резьба.
- •9 Общие сведения о шпоночных соединениях. Соединения с призматическими шпонками. Соединения с сегментными шпонками.
- •10 Общие сведения о шлицевых соединениях. Соединения с прямобочным профилем. Соединения с эвольвентным профилем. Соединения с треугольным профилем.
- •12 Общие сведения о соединениях деталей с натягом. Достоинства и недостатки соединений с натягом. Область применения. Сборка соединения.
- •13 Общие сведения о заклепочном соединении. Применение заклепочного соединения.
- •14 Общие сведения о механических передачах. Функции механических передач. Понятие о передаточном числе. Регулирование частоты вращения ведомого вала.
- •6. Распределение энергии двигателя между несколькими исполнительными элементами машины.
- •15 Общие сведения о зубчатых передачах. Характер и причины отказов зубчатых передач.
- •17 Общие сведения о червячных передачах. Геометрия и кинематика червячной передачи. Виды червячных передач.
- •18 Общие сведения о планетарных передачах. Конструкции планетарных зубчатых передач. Достоинства планетарных зубчатых передач.
- •19 Общие сведения о волновых передачах. Конструкции волновых зубчатых передач. Достоинства и недостатки волновых зубчатых передач.
- •21 Общие сведения о ременных передачах. Силы в передаче.
- •22 Общие сведения о валах и осях. Конструкции валов и осей. Способы передачи нагрузок на валы. Критерии работоспособности валов и осей.
- •23 Общие сведения о подшипниках качения. Классификация подшипников качения. Назначение основных деталей подшипников качения. Посадка колец подшипников качения.
- •24 Общие сведения о подшипниках скольжения. Классификация подшипников скольжения. Режимы смазки подшипников скольжения.
- •25 Общие сведения о муфтах. Классификация муфт. Расчетный момент.
- •26 Общие сведения о пружинах и других упругих элементах. Применение упругих элементов. Конструкции упругих элементов.
- •27 Общие сведения о корпусных деталях. Группы корпусных деталей. Критерии работоспособности. Выбор материалов корпусных деталей.
- •28 Общие сведения о цепных передачах. Роликовые приводные цепи. Зубчатые приводные цепи.
- •29 Передачи клиновым, поликлиновым и зубчатым ремнем. Ременные передачи
- •30 Понятия о допусках формы и расположения поверхностей и шероховатости поверхностей. Использование этих понятий в курсе «ок и дм».
- •31 Проектировочный и проверочный расчеты. Понятие конструирование».
- •32 Понятия: номинальный размер, предельный размер, допуск, поле допуска, посадка, зазор и натяг. Использование этих понятий в курсе «ок и дм».
- •33 Расчет заклепочного соединения, нагруженного растягивающей силой и моментом в плоскости стыка.
- •34 Сведения о контактных напряжениях. Характер и причины отказов под действием контактных напряжений.
- •35 Силы в ветвях цепи. Натяжение цепи. Кпд цепных передач.
- •36 Система вала, система отверстия. Образование посадок в этих системах
- •37Соотношение между силами и моментами, действующими на резьбовые детали в процессе затяжки.
- •38 Цилиндрические передачи
26 Общие сведения о пружинах и других упругих элементах. Применение упругих элементов. Конструкции упругих элементов.
Упругие элементы – детали, жёсткость которых намного меньше, чем у остальных, а деформации выше.
Благодаря этому своему свойству упругие элементы первыми воспринимают удары, вибрации, деформации.
Чаще всего упругие элементы легко обнаружить при осмотре машины, как, например, резиновые покрышки колёс, пружины и рессоры, мягкие кресла водителей и машинистов.
Иногда упругий элемент скрыт под видом другой детали, например, тонкого торсионного вала, шпильки с длинной тонкой шейкой, тонкостенного стержня, прокладки, оболочки и т.п. Однако и здесь опытный конструктор сможет распознать и применять такой "замаскированный" упругий элемент именно по сравнительно малой жёсткости.
Пружины и резиновые упругие элементы применяются в конструкциях некоторых ответственных зубчатых колёс, где они сглаживают пульсации передаваемого вращающего момента, заметно увеличивая ресурс изделия.
Для больших нагрузок при необходимости рассеяния энергии вибрации и ударов применяют пакеты упругих элементов (пружин).
Идея состоит в том, что при деформации составных или слоистых пружин (рессор) энергия рассеивается за счёт взаимного трения элементов, как это происходит в слоистых рессорах и многожильных пружинах.
Пластинчатые пакетные рессоры (рис.2.д) за счёт своего высокого демпфирования успешно применялись с первых шагов транспортного машиностроения ещё в подвеске карет, применялись они и на электровозах, и электропоездах первых выпусков, где были из-за нестабильности сил трения позже заменены витыми пружинами с параллельными демпферами, их можно встретить в некоторых моделях автомобилей и строительно-дорожных машин.
Материалы для пружин должны иметь высокие и стабильные во времени упругие свойства. Основным материалом для пружин являются высокоуглеродистые стали (У9А…У12А), стали легированные кремнием (60С2А), марганцем (65Г), хромом, ванадием, никелем (50ХГА, 50ХФА, 65С2ВА и др.).
Пружины из проволоки диаметром до 8…10 мм изготавливают холодной навивкой, преимущественно прошедшей термообработку, а после навивки подвергают только отпуску. Пружины из проволоки большего сечения навивают в горячем состоянии, затем закаливают. Пружины, подвергнутые переменным напряжениям, дополнительно подвергают пластическому деформированию, так называемому заневоливанию.
Основной характеристикой пружины, как и всякого упругого элемента, является жёсткость или обратная ей податливость. Жёсткость K определяется зависимостью упругой силы F от деформации x. Если эту зависимость можно считать линейной, как в законе Гука, то жёсткость находят делением силы на деформацию K = F / x.
Упругие элементы требуют весьма точных расчётов. В частности, их обязательно рассчитывают на жёсткость, поскольку это главная характеристика.
Упругие элементы находят широчайшее применение:
- для амортизации (снижение ускорений и сил инерции при ударах и вибрации за счёт значительно большего времени деформации упругого элемента по сравнению с жёсткими деталями, например рессоры автомобиля);
- для создания постоянных сил (например, упругие и разрезные шайбы под гайкой создают постоянную силу трения в витках резьбы, что препятствует самоотвинчиванию, сил прижатия диска муфты сцепления);
- для силового замыкания кинематических пар, чтобы исключить влияние зазора на точность перемещения, например в распределительном кулачковом механизме двигателя внутреннего сгорания;
- для аккумуляции (накопления) механической энергии (часовые пружины, пружина оружейного бойка, дуга лука, резина рогатки и т.д.);
- для измерения сил (пружинные весы основаны на связи веса и деформации измерительной пружины по закону Гука);
- для восприятия энергии удара, например буферные пружины, применяемые в железнодорожных составах, артиллерийских орудиях;