
- •1. Характерные неисправности деталей, их классификация и основные причины появления.
- •2. Основные направления и методы повышения износостойкости.
- •3. Физико химические основы упрочнения стали химико-термическими методами.
- •4.Современные методы цементации сталей.
- •5.Современные методы азотирования. Ионное азотирование.
- •6. Нитроцементация.
- •10. Радиационно-стимулированная хто. Физ-хим основы.
- •11 .Полимерные покрытия. Области использования. Классиф-я методов формирования.
- •12 .Активационная обработка пов-ей.
- •13). Механические методы активационной обработки.
- •14). Химические способы активационной обработки
- •15. Фосфатирование и оксидирование поверхностей.
- •16. Электрохимическая и ультразвуковая очистка.
- •17. Обработка поверхностей в тлеющем разряде.
- •19 Физико-хим процессы протек при воздействии электрических зарядов на поверхность
- •20. Газопламенная и радиационная обработка.
- •21. Технология нанесения полимерных покрытий из порошковых материалов.
- •22.Физические основы электризации полимерных порошков
- •24. Оплавление полимерных порошков. Осаждение полимерных порошков на предварительно нагретую поверхность.
- •25 Структура и механически свойства полимерных покрытий
- •31. Газовая металлизация.
- •32 Электродуговая металлизация.
- •33. Высокочастотная металлизация. Плазменное напыление.
- •34.Высокочастотное плазменное напыление.
- •35.Основные направления совершенствования технологии плазменного напыления.
- •36.Детонационное напыление. Достоинства и недостатки.
- •38. Электроискровая обработка.
- •39. Электрохимическое оксидирование.
- •40. Эпиламирование поверхностей.
- •41.Магнитная обработка материалов. Термомагнитная обработка:
- •42. Вакуумное нанесение покрытий. Преимущества и недостатки. Физико-химические основы:
- •43. Требования, предъявляемые к условиям осаждения. Закон Ламберта:
- •44.Механизм конденсации и стадии роста плёнок в вукууме.
- •45. Основные теории зародышеобразования конденсированной фазы.
- •46. Методы осаждения вакуумных покрытий. Их классификация. Закономерности испарения. Уравнения Герца-Кнудсена. Механизмы испарения.
- •47. Резистивное испарение. Испарение сплавов, химических соединений.
- •48. Лазерное нанесение покрытий. Режимы испарения. Технологический процесс лазерного нанесения покрытий. Селективность испарения.
- •49. Электронно-лучевое испарение. Режимы, преимущества и недостатки. Особенности электронно-лучевого испарения диэлектриков.
- •57. Термомеханико-магнитная обработка материалов.
- •58. Магнитная обработка при комнатной температуре. Упрочнение в импульсных магнитных полях. Обработка инструмента в слабых магнитных полях.
- •53. Ионная имплантация. Распределение ионов по толщине слоя.
- •59. Упрочнение методом пластического деформирования.
14). Химические способы активационной обработки
Химические методы применяют с целью обезжиривания поверхности, формирования в результате травления на ней слоя с определенными морфологией, химическим составом и свойствами. Такая обработка заключается в действии на поверхность растворителей, специальных химических растворов, паст. Для повышения эффективности обработки деталь или раствор нагревают до Т— 60...80 °С. После обработки поверхности растворами деталь промывают горячей водой, затем холодной и сушат.
В ряде случаев эффективна электрохимическая обработка, осуществляемая в щелочных (NaOH) растворах или растворах солей NaC03, NaP04 при воздействии постоянного или переменного тока. При прохождении тока через раствор происходит электролиз и на поверхности детали, которая является одним из электродов, образуются газовые пузыри, которые захватывают загрязнения на поверхности и удаляются с поверхности вместе с ними. Основной недостаток данного метода — нельзя провести качественную однородную обработку поверхностей сложной формы.
Одним из наиболее эффективных методов химической обработки, использующихся при подготовке поверхности к окраске, нанесению полимерных покрытий, является фосфатирование и оксидирования!
15. Фосфатирование и оксидирование поверхностей.
Фосфатирование– процесс нанесения фосфатной плёнки на поверхность изделия.
Фосфатирование используют для дополнительной защиты от коррозии, улучшения твердости, износостойкости, повышения электроизоляционных свойств основного покрытия на черных и цветных металлах, придаёт антифрикционные свойства и используют как подслой перед нанесением лакокрасочных покрытий.. Суть процесса фосфатирования состоит в создании на поверхности защищаемого изделия слоя малорастворимых фосфатов железа, цинка или марганца. Фосфатированию подвергаются: чугун, низколегированные, углеродистые стали, кадмий, цинк, медь, сплавы меди, алюминий. Фосфатированию плохо поддаются высоколегированные стали. Фосфатная пленка не боится органических масел, смазочных, горячих материалов, толуола, бензола, всех газов, кроме сероводорода. Под воздействием щелочей, кислот, пресной, морской воды, аммиака, водяного пара покрытие довольно быстро разрушается. Непродолжительный срок службы покрытия также связан с его низкой эластичностью и прочностью.
Процесс фосфатирования нашел широкое применение в автомобильной промышленности. Фосфатная пленка – наилучший грунт. Стальной корпус автомобиля перед покраской подвергают фосфатированию, а далее окрашивают эмалями.
Толщина фосфатного слоя составляет от 2 – 8 до 40 - 50 мкм (зависит от режима фосфатирования, подготовки поверхности, состава раствора для фосфатирования). Толщина покрытия связана с его структурой. Кристаллы фосфатов имеют пластинчатую структуру, благодаря чему пленка отлично впитывает различные пропитки, лаки, удерживая их в себе.
Фосфатное покрытие состоит из двух слоев. Первый, плотно прилегающий к поверхности слой, плотно связан с металлом, незначительной толщины, имеет пористую структуру, а также гладкий и достаточно эластичный. Он состоит, в большей части, с монофосфатов железа. Второй слой (наружный) – состоит из монофосфатов марганца, вторичных и третичных фосфатов. Он более хрупкий, кристаллический. Характеристиками именно наружного слоя обуславливается ценность фосфатных пленок.
Оксидирование — создание оксидной плёнки на поверхности изделия или заготовки в результате окислительно-восстановительной реакции. Оксидирование преимущественно используют для получения защитных и декоративных покрытий, а также для формирования диэлектрических слоёв. Различают термические, химические, электрохимические (или анодные) и плазменные методы оксидирования.
Оксидирование — обработка деталей из стали, алюминия, латуни с целью придания им защитных свойств. Анодное оксидирование черных металлов является надежным старейшим видом массовой и экономичной защиты металлов от коррозии. Кроме того оксидные пленки имеют красивую декоративную внешность, черный цвет (допускаются оттенки синевато-черного цвета или фиолетово-черные), цвета воронова крыла, отчего оксидирование стали называют воронением.
Оксидная пленка представляет собой искусственный слой окалины и состоит из магнитной окиси железа Fe3O4. Красивая внешность и металлический блеск получается на деталях с высокой чистотой обработки. Изделия, оксидированные после травления или пескоструйной обработки, имеют непрозрачный серовато-черный цвет без металлического блеска.
Виды оксидирования: - Термическое оксидирование обычно осуществляют при нагревании изделий в атмосфере, содержащей кислород или водяной пар. Например, термическое оксидирование железа и низколегированных сталей, называемое воронением, проводят в печах, нагретых до 300-350 °C, или при непосредственном нагревании изделий на воздухе, добиваясь необходимого цвета обрабатываемой поверхности.
- химическом оксидировании - изделия обрабатывают растворами или расплавами окислителей (нитратов, хроматов и др.). Химическое оксидирование используют для пассивации металлических поверхностей с целью защиты их от коррозии, а также для нанесения декоративных покрытий на чёрные и цветные металлы и сплавы.
- Электрохимическое оксидирование, или анодное оксидирование (анодирование), деталей проводят в жидких (жидкостное оксидирование), реже в твёрдых, электролитах. Поверхность окисляемого материала имеет положительный потенциал.
- Плазменное оксидирование проводят в кислородсодержащей низкотемпературной плазме, образуемой с помощью разрядов постоянного тока, ВЧ и СВЧ разрядов. Таким способом получают оксидные слои на поверхности кремния.