
- •1.1. Комплексообразователь
- •1.2. Лиганды
- •1.3. Дентатность лиганда
- •1.4. Координационное число
- •1.5. Внутренняя и внешняя сфера комплексного соединения
- •2.1. Названия лигандов
- •2.2. Порядок перечисления лигандов
- •2.3. Нейтральные комплексы
- •2.4. Комплексные катионы
- •2.5. Комплексные анионы
- •2.6. Мостиковые группы и многоядерные комплексы
- •2.7. Геометрические изомеры
- •8.1. Элементы s-секции
- •8.2. Элементы p-секции
- •8.3. Элементы d-секции
- •8.4. Лантаноиды и актиноиды
- •6.1. Теория валентных связей
1.4. Координационное число
Важнейшей характеристикой комплексообразователя является количество химических связей, которые он образует с лигандами, или координационное число (КЧ). Эта характеристика комплексообразователя определяется главным образом строением его электронной оболочки и обусловливается валентными возможностями центрального атома или условного иона-комплексообразователя
Когда комплексообразователь координирует монодентатные лиганды, то координационное число равно числу присоединяемых лигандов. А число присоединяемых к комплексообразователю полидентатных лигандов всегда меньше значения координационного числа.
Значение координационного числа комплексообразователя зависит от его природы, степени окисления, природы лигандов и условий (температуры, природы растворителя, концентрации комплексообразователя и лигандов и др.), при которых протекает реакция комплексообразования. Значение КЧ может меняться в различных комплексных соединениях от 2 до 8 и даже выше. Наиболее распространенными координационными числами являются 4 и 6.
Между значениями координационного числа и степенью окисления элемента-комплексообразователя существует определенная зависимость. Так, для элементов-комплексообразователей, имеющих степень окисления +I (AgI, CuI, AuI, II и др.) наиболее характерно координационное число 2 – например, в комплексах типа [Ag(NH3)2]+, [Cu(CN)2]-, [IBr2]-.
Известны комплексообразователи, которые обладают практически постоянным координационным числом в комплексах разных типов. Таковы кобальт(III), хром(III) или платина(IV) с КЧ 6 и бор(III), платина(II), палладий(II), золото(III) с КЧ 4. Тем не менее большинство комплексообразователей имеет переменное координационное число.
1.5. Внутренняя и внешняя сфера комплексного соединения
Лиганды, непосредственно связанные с комплексообразователем, образуют вместе с ним внутреннюю (координационную) сферу комплекса.
Так, в комплексном катионе [Cu(NH3)4]2+ внутренняя сфера образована атомом комплексообразователя – меди(II) и молекулами аммиака, непосредственно с ним связанными.
Внешнесферные ионы Cl- находятся на более значительном удалении от комплексообразователя, чем молекулы NH3, иначе говоря, расстояние Zn – Cl больше, чем длина химической связи Zn – N. Более того, химическая связь комплексного катиона [Zn(NH3)4]2+ и хлорид-ионов Cl- имеет ионный характер, в то время как молекулы аммиака NH3, входящие во внутреннюю сферу, образуют с комплексообразователем Zn(II) ковалентные связи по донорно-акцепторному механизму (донором неподеленных пар электронов являются атомы азота в NH3). Таким образом, различие между лигандами внутренней сферы и ионами внешней сферы очень существенно.
Изображая формулу комплексного соединения, внешнесферные ионы располагают за квадратными скобками.
При растворении в воде комплексные соединения необратимо диссоциируют на ионы:
Кислоты с комплексными анионами в водном растворе подвергаются необратимому протолизу:
Хелаты, хелатные соединения (от лат. chelate — клешня), также внутрикомплексные или циклические комплексные соединения —
клешневидные комплексные соединения, образуются при взаимодействии ионов металлов с полидентатными (то есть имеющими несколько донорных центров) лигандами. Хелаты содержат центральный ион (частицу) — комплексообразователь и координированные вокруг него лиганды. Внутренняя сфера хелата состоит из циклических группировок, включающих комплексообразователь.
Иногда разделяют понятия хелатного и внутрикомплексного соединения. Второе определение применяют в случае, когда атом-комплексообразователь замещает протон лиганда в соединении.
Хелаты используют в химии для разделения, концентрирования и аналитического определения различных элементов. В медицине и сельском хозяйстве - для введения в пищу микроэлементов (Fe, Cu, Mn и т.д.), благодаря высокой усваиваемости хелатных комплексов по сравнению со свободными ионами металлов.
Аминоуксусная кислота (глицин) может реагировать с гидроксидом меди с образованием сине-фиолетового прочного комплекса, растворимого в воде:
Cu(OH)2 + 2 NH2CH2COOH = [Cu(NH2CH2COO)2] + 2H2O
Лиганд NH2CH2COO− (глицинат-ион) относят к категории бидентатных лигандов, образующих две химические связи с комплексообразователем — через атом кислорода карбоксильной группы и через атом азота аминогруппы.
Внутренняя сфера комплекса содержит два замкнутых пятичленных цикла, в связи с чем полученный комплекс отличается высокой устойчивостью. Константа образования диглицинатомеди(II) β2 равна 1,8·1015.
Реакция Чугаева.
Важное значение в химико-аналитической практике имеет открытая Л. А. Чугаевым реакция взаимодействия диметилглиоксима с катионами никеля(II) в аммиачной среде, приводящая к образованию малорастворимого ярко-красного комплексного соединения — бис(диметилглиоксимато)никеля(II).
Функции лиганда в этом комплексном соединении выполняет диметилглиоксимат-анион, образующий две химические связи с комплексообразователем, вследствие чего получаются два пятичленных циклических фрагмента, упрочняющих комплекс.
Строение получаемого хелата плоское; благодаря внутримолекулярным водородным связям (между лигандами) образуются еще две шестичленные циклические группировки, включающие атомы никеля и стабилизирующие частицу комплекса.
Реакция Чугаева очень чувствительна и селективна по отношению к катионам никеля(II) и позволяют уверенно определить его присутствие в любых химических объектах. Получаемый хелатный комплекс используется как пигмент.
Номенклатура комплексных соединений
Основы современной номенклатуры комплексных соединений были заложены Альфредом Вернером. До его работ в этой области химии не существовало никакой системы. Комплексные соединения называли, руководствуясь их внешним видом, например, пурпуреосоль (красная соль) [Co(NH3)5Cl]Cl2, лутеосоль (желтая соль) состава [Co(NH3)6]Cl3, либо происхождением, например, красная кровяная соль K3[Fe(CN)6] и т.п.
Немало комплексных соединений получили имена химиков, синтезировавших их: соль Фишера K3[Co(NO2)6], соль Рейнеке NH4[Cr(NH3)2(NCS)4] и др.
Современная номенклатура комплексных соединений основана на рекомендациях ИЮПАК (Международный союз общей и прикладной химии) и адаптирована к традициям русского химического языка.