
- •1. Резистивный элемент (резистор)
- •2. Индуктивный элемент (катушка индуктивности)
- •3.Емкостный элемент (конденсатор)
- •4. Топологические понятия теории электрических цепей
- •5.Режимы работы активных двухполюсников (2-хпол-в)
- •6. Схемы замещения источников электрической энергии
- •7. Применение законов Киргхофа для расчета цепей постоянного тока
- •8. Основные принципы и свойства линейных электрических цепей
- •9. Эквивалентные преобразования пассивных участков электрических цепей
- •10. Метод контурных токов
- •11.Метод эквивалентного активного двухполюсника
- •12. Метод двух узлов
- •13. Понятие о четырехполюсниках. Коэффициент передачи
- •14. Расщепление источников
- •15. Преобразование треугольника сопротивлений с источником напряжения в эквивалентную звезду
- •16. Нелинейные электрические цепи постоянного тока
- •Графический метод расчета нелинейных цепей постоянного тока
- •17. Электрические цепи однофазного переменного тока Основные определения
- •18. Векторное изображение синусоидально изменяющихся величин
- •19. Комплексное изображение синусоид. Функций времени
- •20. Сопротивления в цепи синусоидального тока
- •21. Индуктивная катушка в цепи синусоидального тока
- •22. Емкость в цепи синусоидального тока .
- •23. Последовательно соединенные элементов в цепи синусоидальн тока
- •24. Параллельно соединенные индуктивность, емкость и активное сопротивление в цепи синусоидального тока. К схеме подключено синусоидальное напряжение
- •25. Частотные свойства цепей синусоидального тока пересмотрите пожалуйста этот вопрос
- •26. Мощность в цепи синусоидального тока
- •27. Коэффициент мощности в цепях синусоидального тока. Значение повышения коэффициента мощности
- •28. Трехфазные цепи
- •29.Соединение элементов трехфазной цепи звездой
- •30. Соединение элементов трехфазной цепи треугольником
- •31.Мощность трехфазной цепи
- •32. Переходные процессы в линейных электрических цепях
- •33. Магнитные цепи
Графический метод расчета нелинейных цепей постоянного тока
Известные аналитические методы непригодны для расчета нелинейных электрических цепей, т.к. сопротивления нелинейных элементов зависят от направления и значения тока или напряжения. Применяются графоаналитические методы, основанные на применении законов Кирхгофа и использовании заданных вольтамперных характеристик (ВАХ) этих элементов.
Для определения тока в электрической цепи нужно построить результирующую ВАХ цепи. Для построения этой характеристики следует суммировать абсциссы кривых, соответствующие одним и те же значениям тока. Далее, задаваясь произвольным значением тока (например, больше I' и меньше I') можно построить ВАХ всей цепи. Затем, пользуясь этой ВАХ, можно найти искомый ток всей цепи и искомые напряжения
При параллельном соединении двух нелинейных элементов ток в неразветвленной части электрической цепи равен сумме токов в параллельных определенных ветвях. Поэтому при построении результирующей ВАХ всей цепи следует суммировать ординаты графиков, соответствующие одним и те же значениям напряжения, т.к. к этим нелинейным элементам приложено одно и то же напряжение, равное напряжению внешней сети, т.е. источника питания. Далее задаваясь произвольным значением напряжения больше и меньше U', можно построить ВАХ всей цепи. Затем, пользуясь ВАХ, можно при любом значении приложенного напряжения U можно найти величину общего тока I. В случае смешанного соединения расчет цепи производят в следующем порядке: сначала заменяют два параллельно соединенных нелинейных элемента одним эквивалентным; схема со смешанным соединением приводится к рассмотренной ранее схеме последовательного соединения двух нелинейных элементов.
17. Электрические цепи однофазного переменного тока Основные определения
Переменными называется электрический ток, ЭДС и напряжение которые изменяются во времени.
Область применения переменного тока намного шире, чем постоянного, т.к. напряжение переменного тока можно легко понижать или повышать с помощью трансформатора, практически в любых пределах. Переменный ток легче транспортировать на большие расстояния. Но физические процессы, происходящие в цепях переменного тока, сложнее, чем в цепях постоянного тока из-за наличия переменных магнитных и электрических полей.
Значение переменного тока в рассматриваемый момент времени называют мгновенным значением и обозначают строчной буквой i.
Мгновенный
ток называется периодическим, если
значения его повторяются через одинаковые
промежутки времени
.
Наименьший промежуток времени, через который значения переменного тока повторяются, называется периодом T, измеряется в секундах. Периодические токи, изменяющиеся по синусоидальному закону, называются синусоидальными.
Мгновенное
значение синусоидального тока определяется
по формуле
,
где Im -
максимальное, или амплитудное,
значение тока.
Аргумент
синусоидальной функции
называют фазой; величину
,
равную фазе в момент времени t = 0, называют
начальной фазой(в радианах или градусах).
Величину, обратную периоду, называют
частотой(линейная). Частота f
измеряется в герцах.
В Западном полушарии и в Японии
используется переменный ток частотой
60 Гц, в Восточном полушарии - частотой 50
Гц.
Величину
называют круговой, или угловой,частотой(рад/c).
Для
напряжения:
Угол
сдвига фаз м/у токами напряжения для
одного и того же участка цепи называют
разностью фаз:
Если
,т напряжение опережает ток, если
,
то наоборот.
С помощью осциллографа можно измерить амплитудное значение синусоидального тока или напряжения. Амперметры и вольтметры электромагнитной системы измеряют действующие значения переменного тока и напряжения. Действующим значением переменного тока называется среднеквадратичное значение тока за период. Действующее значение тока
.
Аналогично
определяются действующие значения ЭДС
и напряжений
.
Действующие значения переменного тока, напряжения, ЭДС меньше максимальных в √2 раз. Законы Ома и Кирхгофа справедливы для мгновенных значений токов и напряжений.
Закон
Ома для мгновенных значений:
.
Законы
Кирхгофа для мгновенных значений:
.
.