Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
36-73_gotovye.doc
Скачиваний:
1
Добавлен:
01.03.2025
Размер:
1.64 Mб
Скачать

70 Интерференция и дифракция звуковых волн.

Наложение двух или большего числа волн называется интерференцией волн.

Стоячие волны — частный случай интерференции. Стоячие волны образуются в результате наложения двух волн одинаковой амплитуды, фазы и частоты, распространяющихся в противоположных направлениях.

Амплитуда в пучностях стоячей волны равна удвоенной амплитуде каждой из волн. Поскольку интенсивность волны пропорциональна квадрату ее амплитуды, это означает, что интенсивность в пучностях в 4 раза больше интенсивности каждой из волн или же в 2 раза больше суммарной интенсивности двух волн. Здесь нет нарушения закона сохранения энергии, поскольку в узлах интенсивность равна нулю.

Биения. Возможна также интерференция гармонических волн разных частот. Когда две частоты мало различаются, возникают так называемые биения. Биения — это изменения амплитуды звука, происходящие с частотой, равной разности исходных частот. На рис представлена осциллограмма биений.

Биения часто используют при настройке двух тонов в унисон. Настройка частоты производится до тех пор, пока биения не перестанут прослушиваться. Даже если частота биений очень мала, человеческое ухо способно уловить периодическое нарастание и убывание громкости звука.

Дифракцией называется огибание волнами препятствия. Дифракция анализируется с помощью принципа Гюйгенса. Степень такого огибания зависит от соотношения между длиной волны и размером препятствия или отверстия. Поскольку длина звуковой волны во много раз больше, чем световой, дифракция звуковых волн менее удивляет нас, нежели дифракция света. Так, можно разговаривать с кем-то стоящим за углом здания, хотя он и не виден. Звуковая волна с легкостью огибает угол, тогда как свет из-за малости своей длины волны дает резкие тени.

Рассмотрим дифракцию плоской звуковой волны, падающей на твердый плоский экран с отверстием. Для определения формы волнового фронта по другую сторону экрана нужно знать соотношение между длиной волны l и диаметром отверстия D. Слева — длина волны звука намного больше диаметра отверстия, волновой фронт за отверстием имеет вид полусферы; справа — длина волны звука значительно меньше диаметра отверстия, волна почти не расходится в стороны.

Дифракция наблюдается и тогда, когда на пути звука оказывается какое-либо препятствие. Если размеры препятствия намного больше длины волны, то звук отражается, а позади препятствия формируется зона акустической тени. Когда размеры препятствия сравнимы с длиной волны или меньше ее, звук дифрагирует в какой-то мере во всех направлениях. Это учитывается в архитектурной акустике. Так, например, иногда стены здания покрывают выступами с размерами порядка длины волны звука. (На частоте 100 Гц длина волны в воздухе около 3,5 м.) При этом звук, падая на стены, рассеивается во всех направлениях. В архитектурной акустике это явление называется диффузией звука.

71 Источники и приемники звука. Принципы их работы.

Звук - распространяющиеся в упругих средах, газах, жидкостях и твердых телах механические колебания, воспринимаемые ухом.

Источник звука - различные колеблющиеся тела, например туго натянутая струна или тонкая стальная пластина, зажатая с одной стороны. Достаточно оттянуть и отпустить струну музыкального инструмента или стальную пластину, зажатую одним концом в тисках, как они будут издавать звук. Колебания струны или металлической пластинки передаются окружающему воздуху. Когда пластинка отклонится, например в правую сторону, она уплотняет (сжимает) слои воздуха, прилегающие к ней справа; при этом слой воздуха, прилегающий к пластине с левой стороны, разредится, и т.д. Сжатие и разрежение прилегающих к пластине слоев воздуха будет передаваться соседним слоям. Этот процесс будет периодически повторяться, постепенно ослабевая, до полного прекращения колебаний

Таким образом колебания струны или пластинки возбуждают колебания окружающего воздуха и, распространяясь, достигают уха человека, заставляя колебаться его барабанную перепонку, вызывая раздражение слухового нерва, воспринимаемое нами как звук.

Колебания воздуха, источником которых является колеблющееся тело, называют звуковыми волнами, а пространство, в котором они распространяются, звуковым полем.

Скорость распространения звуковых колебаний зависит от упругости среды, в которой они распространяются. В воздухе скорость распространения звуковых колебаний в среднем равна 330 м/с, однако она может изменяться в зависимости от его влажности, давления и температуры. В безвоздушном пространстве звук не распространяется.

При распространении звука, вследствие колебаний частиц среды, в каждой точке звукового поля происходит периодическое изменение давления. Среднее квадратичное значение величины этого давления, обозначаемое буквой P, называют звуковым давлением. За единицу звукового давления принята величина, равная силе в один ньютон (Н), действующей на площадь в один квадратный метр (Н/м2). Чем больше звуковое давление, тем громче звук.

Приёмники звука, акустические приборы для восприятия звуковых сигналов и преобразования их с целью измерения, передачи, воспроизведения, записи или анализа. Наиболее распространены Приёмники звука, преобразующие акустические сигналы в электрические (см. Электроакустические преобразователи). К ним относятся применяемые в воздухе микрофоны, в воде — гидрофоны, в грунте — геофоны. Важнейшие характеристики таких Приёмники звука: чувствительность, представляющая собой отношение электрического сигнала (напряжения, тока) к акустическому (например, звуковому давлению); частотная характеристика; собственное электрическое сопротивление; направленность.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]