
- •36 Способы инициирования химической реакции в горючей смеси.
- •37 Условие поджигания горючей смеси нагретой плоской поверхностью. Понятие критического теплоотвода.
- •38 Особенности поджигания нагретым телом потока горючей смеси.
- •39 Понятие ударной волны в идеальном газе. Энергия, давление, скорость и температура ударной волны в двухатомных газах. Ширина ударной волны.
- •40 Понятие адиабаты Гюгонио.
- •41 Понятие детонации и детонационной волны. Скорость детонации.
- •42 Прямая Михельсона. Ширина волны детонации.
- •43 Учет потерь тепла при детонации. Пределы детонации и причины их существования. Условия перехода нормального горения в детонацию. Понятие ретонационной волны.
- •44 Понятие дыма. Дымообразование. Определение параметров дыма: концентрации, коэффициента дымообразования, оптической плотности, затемнения.
- •46 Движение дыма. Силы, обуславливающие движение дыма. Понятие нейтральной плоскости.
- •47 Интенсивность дымообразования при пожаре. Назначение систем регулирования дыма.
- •48 Определение теплового излучения. Основные законы теплового излучения. Получение формулы Планка.
- •49 Излучение светящихся пламен и горячих задымленных газов. Серое и реальное тела. Коэффициент черноты.
- •50 Закон Ламберта. Коэффициенты облученности. Тепловое излучение как фактор пожара.
- •51 Роль теплового излучения горячего дыма в развитии пожара.
- •52 Распространение пламени по жидким и твердым горючим материалам.
- •53 Влияние внешних условий на распространение пламени.
- •54 Динамика пожара в закрытом помещении: основные этапы пожара в закрытом помещении.
- •56 Стадия полного охвата, как случай термической неустойчивости внутри помещения. Факторы, влияющие на время наступления стадии полного охвата в закрытом помещении.
- •57 Этап полностью развитого пожара. Режимы горения и температуры полностью развитых пожаров.
- •58 Способы обнаружения пожара. Основные типы детекторов (пожарных извещателей) и принципы их работы. Тестовые испытания.
- •59 Типы рассеяния света, используемые для детектирования пожара.
- •61 Понятие эффективности сфз.
- •62 Моделирование сфз. Понятие критической точки обнаружения. Качественная и количественная оценка эффективности сфз.
- •63 Современные системы охраны периметра. Общие требования и специфика применения.
- •64 Основные виды систем охраны периметра.
- •3. Радиоволновые системы охраны периметра.
- •4.Емкостные системы охраны периметра.
- •65 Приборы ночного видения как элемент сфз. Особенности зрения. Принципы работы приборов ночного видения различных поколений.
- •66 Акустические датчики в сфз.
- •67 Понятие звука. Основные параметры, определяющие величину скорости звука в различных средах. Звуковое давление.
- •68 Физические характеристики звука. Зависимость звука от частоты. Интенсивность звука и единицы её измерения.
- •69 Факторы, влияющие на распространение звуковых волн. Рефракция звука. Затухание и поглощение звука.
- •70 Интерференция и дифракция звуковых волн.
- •71 Источники и приемники звука. Принципы их работы.
- •72 Ультразвук. Особенности распространения ультразвука в различных средах. Бегущие и стоящие волны. Отражение ультразвука. Акустическая кавитация.
- •73 Эффект Доплера в акустике.
66 Акустические датчики в сфз.
В
качестве механизма обнаружения
используется механическая, или
акустическая, волна. Когда волна
распространяется внутри материала или
по его поверхности, любые изменения
характеристик траектории распространения
волны влияют на скорость и/или амплитуды
волны. Частота и фазовые характеристики
показывают изменение скорости волны.
Практически все акустические приборы
и датчики для генерирования волны
используют пьезоэлектрические материалы.
Пьезоэлектрические акустические сенсоры
создают механические волны с помощью
электрического поля. Эти волны
распространяются через субстрат, а
затем, для проведения необходимых
измерений, трансформируются обратно в
электрическое поле.
изображена схема типичного акустического устройства. Перемещение частиц поперечных, или сдвиговых, волн происходит по нормали по отношению к направлению распространения волны. Оно может быть поляризовано таким образом, чтобы быть параллельным или перпендикулярным по отношению к чувствительной поверхности. Движение сдвиговой горизонтальной волны обозначает поперечные перемещения параллельно чувствительной поверхности; движение сдвиговой вертикальной волны – перпендикулярно ей. Волна, проходящая через подложку, называется объемной волной. Если волна распространяется на поверхности подложки, тогда она называется поверхностной волной. Любое изменение в характеристики пути распространения акустической волны изменит соответственно и результат на выходе. Все датчики будут работать в газовой или вакуумной среде, но только их совокупность будет эффективно работать при контакте с жидкостями. Поперечная горизонтальная волна не излучает энергию в жидкостях, и это позволяет работать с жидкостями без чрезмерного затухания. В общем случае, чувствительность датчика пропорциональна количеству энергии, которая возникает на пути распространения волны. Датчики объемной акустической волны рассеивают энергию с поверхности через вещество основы на другую поверхность. Распределение энергии минимизирует интенсивность энергии на поверхности, на которой происходит измерение.
67 Понятие звука. Основные параметры, определяющие величину скорости звука в различных средах. Звуковое давление.
Звук, в широком смысле — упругие волны, распространяющиеся в какой-либо упругой среде и создающие в ней механические колебания; в узком смысле — субъективное восприятие этих колебаний специальными органами чувств животных или человека.
Как и любая волна, звук характеризуется амплитудой и спектром частот. Обычно человек слышит звуки, передаваемые по воздуху, в диапазоне частот от 16—20 Гц до 15—20 кГц. Звук ниже диапазона слышимости человека называют инфразвуком; выше: до 1 ГГц, — ультразвуком, от 1 ГГц — гиперзвуком.
Различают продольные и поперечные звуковые волны в зависимости от соотношения направления распространения волны и направления механических колебаний частиц среды распространения.
Звуковые волны могут служть примером колебательного процесса. Всякое колебание связано с нарушением равновесного состояния системы и выражается в отклонении её характеристик от равновесных значений с последующим возвращением к исходному значению. Для звуковых колебаний такой характеристикой является давление в точке среды, а её отклонение — звуковым давлением.
Если произвести резкое смещение частиц упругой среды в одном месте, например, с помощью поршня, то в этом месте увеличится давление. Благодаря упругим связям частиц давление передаётся на соседние частицы, которые, в свою очередь, воздействуют на следующие, и область повышенного давления как бы перемещается в упругой среде. За областью повышенного давления следует область пониженного давления, и, таким образом, образуется ряд чередующихся областей сжатия и разрежения, распространяющихся в среде в виде волны. Каждая частица упругой среды в этом случае будет совершать колебательные движения.
В жидких и газообразных средах, где отсутствуют значительные колебания плотности, акустические волны имеют продольный характер, то есть направление колебания частиц совпадает с направлением перемещения волны. В твёрдых телах, помимо продольных деформаций, возникают также упругие деформации сдвига, обусловливающие возбуждение поперечных (сдвиговых) волн; в этом случае частицы совершают колебания перпендикулярно направлению распространения волны. Скорость распространения продольных волн значительно больше скорости распространения сдвиговых волн.
Звук – это волна. Скорость распространения звуковой волны напрямую зависит от свойств среды, в которой звуковая волна распространяется. Этими свойствами являются упругость и плотность среды. Чем более упругая и более плотная среда, тем скорость распространения звуковой волны в ней выше. Скорость звука в газах находится в прямой зависимости от температуры газа: с повышением температуры скорость звука возрастает. Скорость распространения звука в газах меньше, чем в жидкостях и в твердых телах. Скорость звука в жидкостях также зависит от температуры жидкости. Она больше, чем в газах, но меньше, чем в твердых телах. Скорость звука в воде зависит не только от температуры воды, но и от концентрации в ней солей. Скорость распространения звука в морской воде несколько выше, чем в пресной.
Звуково́е давле́ние — переменное избыточное давление, возникающее в упругой среде при прохождении через неё звуковой волны. Единица измерения — паскаль (Па).
Мгновенное значение звукового давления в точке среды изменяется как со временем, так и при переходе к другим точкам среды, поэтому практический интерес представляет среднеквадратичное значение данной величины, связанное с интенсивностью звука:
где I— интенсивность звука, P — звуковое давление, Zs— удельное акустическое сопротивление среды, < > t — усреднение по времени.
Т. о., З. д. представляет собой переменную часть давления, т. е. колебания давления относительно среднего значения, частота которых соответствует частоте звуковой волны. З. д. — основная количественная характеристика звука. Единица измерения З. д. в системе единиц СИ — ньютон на м2. З. д. в воздухе изменяется в широких пределах — от 10-5 н/м2 вблизи порога слышимости до 103 н/м2 при самых громких звуках, например шумах реактивных самолётов. В воде на ультразвуковых частотах порядка нескольких Мгц с помощью фокусирующих излучателей получают значение З. д. до 107н/м2. При значит. З. д. наблюдается явление разрыва сплошности жидкости — Кавитация. З. д. следует отличать от давления звука.