
- •36 Способы инициирования химической реакции в горючей смеси.
- •37 Условие поджигания горючей смеси нагретой плоской поверхностью. Понятие критического теплоотвода.
- •38 Особенности поджигания нагретым телом потока горючей смеси.
- •39 Понятие ударной волны в идеальном газе. Энергия, давление, скорость и температура ударной волны в двухатомных газах. Ширина ударной волны.
- •40 Понятие адиабаты Гюгонио.
- •41 Понятие детонации и детонационной волны. Скорость детонации.
- •42 Прямая Михельсона. Ширина волны детонации.
- •43 Учет потерь тепла при детонации. Пределы детонации и причины их существования. Условия перехода нормального горения в детонацию. Понятие ретонационной волны.
- •44 Понятие дыма. Дымообразование. Определение параметров дыма: концентрации, коэффициента дымообразования, оптической плотности, затемнения.
- •46 Движение дыма. Силы, обуславливающие движение дыма. Понятие нейтральной плоскости.
- •47 Интенсивность дымообразования при пожаре. Назначение систем регулирования дыма.
- •48 Определение теплового излучения. Основные законы теплового излучения. Получение формулы Планка.
- •49 Излучение светящихся пламен и горячих задымленных газов. Серое и реальное тела. Коэффициент черноты.
- •50 Закон Ламберта. Коэффициенты облученности. Тепловое излучение как фактор пожара.
- •51 Роль теплового излучения горячего дыма в развитии пожара.
- •52 Распространение пламени по жидким и твердым горючим материалам.
- •53 Влияние внешних условий на распространение пламени.
- •54 Динамика пожара в закрытом помещении: основные этапы пожара в закрытом помещении.
- •56 Стадия полного охвата, как случай термической неустойчивости внутри помещения. Факторы, влияющие на время наступления стадии полного охвата в закрытом помещении.
- •57 Этап полностью развитого пожара. Режимы горения и температуры полностью развитых пожаров.
- •58 Способы обнаружения пожара. Основные типы детекторов (пожарных извещателей) и принципы их работы. Тестовые испытания.
- •59 Типы рассеяния света, используемые для детектирования пожара.
- •61 Понятие эффективности сфз.
- •62 Моделирование сфз. Понятие критической точки обнаружения. Качественная и количественная оценка эффективности сфз.
- •63 Современные системы охраны периметра. Общие требования и специфика применения.
- •64 Основные виды систем охраны периметра.
- •3. Радиоволновые системы охраны периметра.
- •4.Емкостные системы охраны периметра.
- •65 Приборы ночного видения как элемент сфз. Особенности зрения. Принципы работы приборов ночного видения различных поколений.
- •66 Акустические датчики в сфз.
- •67 Понятие звука. Основные параметры, определяющие величину скорости звука в различных средах. Звуковое давление.
- •68 Физические характеристики звука. Зависимость звука от частоты. Интенсивность звука и единицы её измерения.
- •69 Факторы, влияющие на распространение звуковых волн. Рефракция звука. Затухание и поглощение звука.
- •70 Интерференция и дифракция звуковых волн.
- •71 Источники и приемники звука. Принципы их работы.
- •72 Ультразвук. Особенности распространения ультразвука в различных средах. Бегущие и стоящие волны. Отражение ультразвука. Акустическая кавитация.
- •73 Эффект Доплера в акустике.
36 Способы инициирования химической реакции в горючей смеси.
При химическом приращении, идущем посредством цепного разветвленного процесса, интенсифицировать реакцию можно введением в газовую смесь активных центров, обеспечивающих развитие цепи. Активные центры (радикалы, атомы, ионы) вступают в промежуточные акты превращения с большой активностью – часто с практически нулевой энергией активации; скорость этих актов определяется частотой столкновений активных центров с компаньонами по элементарным актам, так часто суммарная скорость химического превращения оказывается большой даже при незначительной концентрации активных частиц. Вне полуострова воспламенения реакции обрыва цепей так же идут достаточно быстро (малая энергия активации) и процесс может считаться изотермическим.
Для теоретического описания инициирования химической реакции активными центрами необходимо исходить из определенной кинетической схемы цепного превращения и поэтому в отличие от теплового механизма, где универсальность результатов диктуется аррениусовской зависимостью скорости тепловыделения от температуры, здесь такой универсальности достичь нельзя. Способ инициирования, вид вводимых в газовую смесь активных центров для каждой горючей смеси различны и их нужно в каждом случае рассматривать по отдельности.
37 Условие поджигания горючей смеси нагретой плоской поверхностью. Понятие критического теплоотвода.
Если в реакционноспособное холодное вещество (оно может находиться в покое или в движении) поместить нагретое до высокой температуры твердое тело, то в тонком слое вблизи поверхности тела в прогревающемся веществе пойдет интенсивная химическая реакция. Выделяющееся в реакции тепло будет расходоваться на прогрев новых слоев холодного вещества, частично теплопроводностью может передаваться внутрь тела, кроме того, часть тепла будет идти на повышение температуры в зоне реакции.
Теория поджигания нагретым телом тесно связана со стационарной теорией теплового взрыва. Очевидно, что существенным для возникновения теплового взрыва являются скорость химической реакции и скорость выделения тепла при температурах, близких к температуре стенки.
Вещество вблизи холодной стенки можно рассматривать как инертное, оно играет роль лишь проводника тепла, обеспечивая отвод тепла из зоны активной химической реакции в холодную стенку. Чем больше расстояние между стенками, тем меньше теплоотвод из зоны реакции и тем предпочтительнее условия для возникновения теплового взрыва.
Преобразуя функцию тепловыделения вблизи температуры горячей стенки Т0 по Д. А. Франк-Каменецкому и вводя безразмерные переменные
так, что θ = 0 на поджигающей стенке,
сведем стационарное уравнение теплопроводности
к уравнению вида
(*)
Ограничиваясь кривыми, максимум которых лежит при ζ = 0 (все остальные кривые могут быть получены просто сдвигом по оси ζ) получим следующую картину:
Чем выше максимум кривой, тем она круче в соответствии с большим значением exp(θ) и тем больше производная температуры вдали от максимума, т. к. больше количество отводимого тепла. Непосредственно воспользоваться для задачи о зажигания холодного реакционноспособного вещества плоской накаленной поверхностью нельзя, т. к. было введено ограничение на этом рисунке только функциями, имеющими максимумы в центре сосуда при ζ = 0, т. е. симметричными относительно оси ординат, что возможно лишь при симметричных граничных условиях
Семейство интегральных кривых, отражающих стационарное распределение температуры вблизи накаленной плоской поверхности, отвечающих граничному условию на горячей стенке θ = 0 при ζ = 0:
Можно утверждать, что наименее круто спадает и, следовательно, выше всех остальных кривых находится на большом удалении от стенки располагается кривая, для которой точка есть максимум (кривая 1). Кривая 1, отвечающая решению с нулевой производной на горячей стенке, при больших ζ асимптотически стремится к огибающей рассматриваемого семейства и. следовательно, задает предельную зависимость расстояние – температура холодной стенке на приделе воспламенения.
При больших расстояниях между стенками, температура одной из которых значительно больше другой, задача сводится к решению уравнения (*) с граничным условием на горячей стенке θ = 0, ζ = 0 и условием вдали от нее:
,
где q – теплоотвод от зоны химической реакции в холодный газ.
При больших значениях q, когда выделяющееся в реакции тепло успевает отводиться в холодные слои газа, решение стационарной задачи существует; при малых q решения нет. Минимальное значение q достигается при:
Важнейшее свойство критического решения – обращение в нуль производной температуры у поджигающей стенки. При критическом режиме реагирования в холодное вещество отводится все тепло, которое выделяется в результате химической реакции. Теплообмен между стенкой и веществом отсутствует. Стенка находится в адиабатических условиях. При малых теплоотводах стационарное решение уравнение теплоотвода с функцией тепловыделения не существует – происходит поджигание смеси. Выражение для критического теплоотвода в размерных переменных имеет следующий вид: