
- •7.12 Визначення тривалості перебування метала вище заданої температури
- •7.13 Нагрів тіл при електроконтактному зварюванні
- •8 Металургійні процеси при зварюванні плавленням
- •8.1 Типи зварювальних ванн
- •8.2 Газова фаза
- •8.3 Вплив кисню на властивості сталі
- •8.4 Вплив азоту на властивості сталі
- •8.5 Вплив водню на властивості сталі
- •8.6 Вплив сo на властивості сталі
- •8.7 Шлаки та їх призначення
- •8.8 Властивості зварювальних шлаків
- •8.9 Властивості основних оксидів шлакової фази
- •8.10 Взаємодія між розплавленим металом, газовим
- •8.11 Окиснювальні процеси
- •8.12 Розкиснювальні процеси
- •8.13 Дифузійне розкиснення
- •8.14 Розкиснення металу кислотними та основними
- •8.15 Легування металу шва
- •8.16 Рафінування металу шва
- •8.17 Очищення металу зварювальної ванни від сірки
- •8.18 Очищення зварювальної ванни від фосфору
- •9 Термодеформаційні процеси при зварюванні
- •9.1 Поняття про зварювальні напруги і деформації
- •9.2 Класифікація зварювальних напруг та
- •9.3 Особливості виникнення деформацій при зварюванні
- •9.4 Теплофізичні властивості в термодеформаційних
- •9.5 Механічні характеристики в деформаційних
- •9.6 Дилатометричні криві
- •9.7 Термодеформаційний цикл
- •9.8 Теоретичні методи визначення зварювальних
- •9.9 Експериментальні методи визначення зварювальних
- •9.10 Методи визначення тимчасових напруг
- •9.11 Визначення тимчасових деформацій
- •9.12 Методи визначення залишкових напруг та
- •9.13 Типові поля залишкових напруг в зварних
- •10 Здатність металів до зварювання
- •10.1 Поняття про здатність металів до зварювання
- •10.2 Оцінка технологічної здатності металів до
- •10.3 Вибір способу зварювання в залежності від
- •10.4 Принципи вибору зварювальних матеріалів
- •10.5 Принципи вибору раціональних режимів зварювання
- •10.6 Особливості здатності металів та сплавів до
- •11 Кристалізація металу шва та технологічна міцність
- •11.1 Загальні положення теорії кристалізації
- •11.2 Особливості плавлення та кристалізації металу шва
- •11.3 Структура металу шва та біляшовної зони
- •11.4 Вторинна кристалізація
- •11.5 Хімічна неоднорідність металу
- •11.6 Ліквація металу шва
- •11.7 Фізична неоднорідність металу шва
- •11.8 Технологічна міцність
- •Література
9.6 Дилатометричні криві
Для
отримання залежностей величини деформації
від температури використовуються
спеціальні прилади — дилатометри.
Можуть бути два види залежностей величини
деформації від температури (рисунок
9.6), які використовуються для визначення
коефіцієнта лінійного розширення (
).
Якщо дослідний температурний інтервал
невеликий або у цьому інтервалі
змінюється незначно, то використовують
середнє значення
.
Якщо у температурному інтервалі
змінюється значно (для матеріалів, у
яких при нагріванні та охолодженні
відбуваються структурні перетворення)
використовувати
не можливо і для кожної величини
температури визначається відповідне
значення
.
9.7 Термодеформаційний цикл
Термодеформаційний цикл — це зміна напруго–деформаційного стану тіла у взаємозв’язку з термічним циклом (рисунок 9.7) при зварюванні.
Величина та характер напруг та деформацій буде залежати від:
1) форми та розмірів конструкцій, що зварюються;
2) режимів нагрівання та охолодження конструкцій;
3) теплофізичних властивостей матеріалів, що зварюються;
4) способу зварювання.
Температура у поперечному перерізі шва розподіляється нерівномірно, чим далі від вісі шва, тим менша температура (рисунок 9.8) та напруги.
Рисунок 9.8 — Розподіл температури у
поперечному перерізі зварного
шва
Чим далі точка знаходиться від вісі зварного шва, тим нижча в ній максимальна температура і тим вона пізніше буде досягатися. На стадії нагрівання в області високих температур виникають напруги стиску. На стадії охолодження у цих зонах вони переходять в напруги розтягу.
Додатково дивись п. 9.13.3.
9.8 Теоретичні методи визначення зварювальних
напруг та деформацій
Існують наступні методи визначення зварювальних напруг та деформацій: графорозрахункові і методи, що використовують апарат теорії пружності та пластичності.
9.8.1 Графорозрахункові методи
Графорозрахункові методи використовуються для визначення повздовжніх напруг та деформацій при наплавленні валика на край штаби та при зварюванні вузьких пластин в стик. На практиці використовуються два методи: Ніколаєва та Окерблома.
По методу Ніколаєва розглядається переріз зварного шва, для якого виконуються аналітичні розрахунки та графічні побудови, які дають можливість визначити величину та характер зміни як тимчасових, так і залишкових напруг.
По методу Окерблома розглядається декілька перерізів, для кожного із яких виконуються ті ж операції, що й по методу Ніколаєва. Цей метод більш важкий, але точніший.
Вказані методи відносно прості, добре ілюструють механізм утворення напруг та деформацій, дозволяють визначити їх величину і використовуються для низьковуглецевих та аустенітних, що стійки до корозії, сталей. Для цих матеріалів розраховані та експериментальні залишкові напруги близькі до межу текучості. Але ці методи не рекомендують використовувати для алюмінію, титану, магнію та їх сплавів, тому що для цих матеріалів за експериментальними даними залишкові напруги менш межі текучості і не відповідають розрахованим.
При зварювані реальних конструкцій, де має місце складний напружений стан, рекомендують використовувати методи, які засновані на апараті теорії пружності та пластичності.
9.8.2 Методи, які засновані на апараті теорії пружності та
пластичності
При використанні апарату теорії пружності необхідно, щоб температура у інтервалі, що розглядається, не впливала на механічні характеристики, або сам температурний інтервал був достатньо малий. В основі всіх розрахунків полягає закон Гука (9.5).
У більшості випадків при зварюванні температури змінюються на значні величини. В таких випадках використовують апарат теорії пластичності. Широке використання знайшов принцип пружних рішень, у якому пластична задача розбивається на декілька пружних
взаємопов’язаних задач, які послідовно вирішуються, уточнюються з введенням допоміжних умов. Розрізняють методи:
1) метод допоміжних навантажень;
2) метод допоміжних переміщень (деформацій);
3) метод змінних параметрів пружності.