
- •4 Термопресові процеси
- •4.1 Контактне зварювання
- •4.1.1 Точкове контактне зварювання
- •4.1.2 Стикове контактне зварювання
- •4.2 Термокомпресійне зварювання
- •4.3 Ковальське зварювання
- •4.4 Дифузійне зварювання в вакуумі
- •4.5 Зварювання в електричному полі
- •4.6 Високочастотний нагрів
- •5 Пресово-механічні процеси
- •5.1 Зварювання тертям
- •5.2 Холодне зварювання
- •5.3 Ультразвукове зварювання
- •5.4 Зварювання вибухом
- •6 Елементи хімічної термодинаміки
- •6.1 Основні поняття та визначення
- •6.2 Термодинамічні функції стану
- •6.3 Перший закон термодинаміки
- •6.4 Термодинамічні процеси
- •6.5 Обчислення теплового ефекту
- •6.6 Обчислення теплоємності
- •6.7 Другий закон термодинаміки
- •6.8 Хімічні потенціали
- •6.9 Хімічна рівновага
- •6.10 Хімічна спорідненість
- •6.11 Вплив температури і тиску на положення хімічної
- •6.12 Явища в рідких середовищах і на поверхні розділу фаз
- •6.13 Поверхнева енергія рідини
- •6.14 Адсорбція
- •6.15 В’язкість рідини
- •6.16 Випаровування
- •6.17 Про хімічну спорідненість елементів до кисню
- •6.18 Дифузія в металах
- •6.19 Елементи електрохімії
- •7 Теплові процеси при зварюванні
- •7.1 Основні поняття та визначення
- •7.2 Схеми нагріваємих тіл
- •7.3 Основи теорії теплопровідності
- •7.4 Розрахунок нагріву метала дугою
- •7.5 Нагрів та розплавлення електрода
- •7.6 Електрод нескінченої довжини
- •7.7 Нагрів та розплавлення основного метала
- •7.8 Теплова ефективність процеса проплавлення
- •Продуктивність процесів наплавлення та
- •Вплив термічного цикла процеса зварювання
- •7.11 Миттєва швидкість охолодження
6.13 Поверхнева енергія рідини
Властивості поверхні рідини можуть суттєво відрізнятись від властивостей внутрішніх об’ємів. Головна причина — наявність поверхневої енергії або енергії поверхневого натягу.
Наявність поверхневого натягу можна пояснити за допомогою рисунка 6.3.
а — в середині об’єму рідини; б — на поверхні рідини
Рисунок 6.3 — Дія сил міжмолекулярної взаємодії на молекулу
Розглянемо дві молекули: одну в об’ємі, другу на поверхні рідини. Між молекулами в середині об’єму рідини діють сили міжмолекулярної взаємодії. Для кожної молекули в середині об’єму ці сили симетричні, зрівноважені, тому рівнодіюча цих сил для молекули А дорівнює нулю.
Для молекули В, яка знаходиться на поверхні сили взаємодії не симетричні, що веде до появлення рівнодіючої cили Р, яка намагається втягнути молекулу в середину об’єму, що обумовлює поверхневий натяг.
Для збільшення площі поверхні рідини необхідно перевести частину молекул з об’єму на поверхню, а для цього потрібно виконати певну роботу. Робота, яка необхідна для утворення 1 см2 поверхні при наявності певного прикордонного середовища, є мірою поверхневого натягу , (дінсм-1).
Величина
поверхневого натягу залежить як від
природи розчиненої речовини, так і від
природи розчинника. Речовини, які
зменшують
,
називаються поверхнево–активними
речовинами. Речовини, мало впливаючи
на зміну
називаються поверхнево–неактивними
речовинами.
На вихід молекул з рідини дуже сильно впливає форма кривизни поверхні (рисунок 6.4).
Рисунок 6.4 — Вплив форми поверхні на величину рівнодіючої сили
Найменше значення рівнодіючої сили Р при вигнутій поверхні (рисунок 6.4, а). З цього слідує, що краплі малого розміру мають більше значення тиску пари і тому менш стійкі. Чим менший розмір краплі, тим краща її розчинність. На величину дуже впливає температура. Із збільшенням температури рівномірно зменшується і при деякому значенні температури дорівнює нулю. Ця температура називається критичною температурою або температурою абсолютного кипіння. При ній зникає межа розділу між рідкою і газовою фазами і речовина не може існувати в рідкій фазі.
6.14 Адсорбція
Процес адсорбції заснований на захваті адсорбуючою поверхнею атомів із навколишнього середовища. Це пояснюється тим, що атоми навколишнього газового середовища знаходяться в постійному русі, а на адсорбуючій поверхні завжди є атоми з ненасиченими вільними зв’язками, за допомогою яких здійснюється захват атомів з навколишнього середовища. Якщо ці сили зв’язку не великі, то при збільшенні температури за рахунок збільшення амплітуди коливань атомів, здійснюється їх повернення в навколишнє середовище — десорбція (возгонка, випаровування). В цьому випадку процес адсорбції зменшується.
В загальному випадку, чим більша температура і менший тиск навколишнього середовища, тим менша адсорбція. Час адсорбції триває декілька секунд. Адсорбція залежить, як від природи адсорбуючої речовини, так і від природи розчинника. Краще всього адсорбуються гази, які легше конденсуються і які мають найбільш високу температуру кипіння.
Процес адсорбції збільшується, якщо розчинник вміщує поверхнево–активні речовини. Для рідини продовженням процесу адсорбції є проникнення атомів газів в середину рідини шляхом дифузії або механічним перемішуванням.
Проникнення адсорбованого атома в тверде тіло — абсорбція.