Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Математика (1 семестр) ответы 20-40.docx
Скачиваний:
0
Добавлен:
01.03.2025
Размер:
1.16 Mб
Скачать

Вопрос32 Функция. Способы задания. Классификация функций. Основные элементарные функции и их графики. Композиция функций. Элементарные функции.

Функция — математическое понятие, отражающее связь между элементами множеств. Можно сказать, что функция это «закон», по которому каждому элементу одного множества (называемому областью определения) ставится в соответствие некоторый элемент другого множества (называемого областью значений).

Математическое понятие функции выражает интуитивное представление о том, как одна величина полностью определяет значение другой величины. Так значение переменной x однозначно определяет значение выражения x2, а значение месяца однозначно определяет значение следующего за ним месяца, также любому человеку можно сопоставить другого человека — его отца. Аналогично, некоторый задуманный заранее алгоритм по варьируемым входным данным выдаёт определённые выходные данные.

Способы задания функции

Аналитический способ

Функция математический объект представляет собой бинарное отношение, удовлетворяющее определенным условиям. Функцию можно задать непосредственно как множество упорядоченных пар, например: есть функция . Однако, этот способ совершенно непригоден для функций на бесконечных множествах (каковыми являются привычные вещественные функции: степенная, линейная, показательная, логарифмическая и т. п.).

Для задания функции пользуются выражением: . При этом, x есть переменная, пробегающая область определения функции, а y - область значений. Эта запись говорит о наличии функциональной зависимости между элементами множеств. х и y могут пробегать любые множества объектов любой природы. Это могут быть числа, векторы, матрицы, яблоки, цвета радуги. Поясним на примере:

Пусть имеется множество яблоко, самолет, груша, стул и множество человек, паровоз, квадрат . Зададим функцию f следующим образом: (яблоко,человек), (самолет,паровоз), (груша,квадрат), (стул,человек) . Если ввести переменную x, пробегающую множество и переменную y, пробегающую множество , указанную функцию можно задать аналитически, как: .

Аналогично можно задавать числовые функции. Например: где х пробегает множество вещественных чисел задает некоторую функцию f. Важно понимать, что само выражение не является функцией. Функция как объект представляет собой множество (упорядоченных пар). А данное выражение как объект есть равенство двух переменных. Оно задает функцию, но не является ею.

Однако, во многих разделах математики, можно обозначать через f(x) как саму функцию, так и аналитическое выражение, ее задающее. Это синтаксическое соглашение является крайне удобным и оправданным.

Графический способ

Числовые функции можно также задавать с помощью графика. Пусть - вещественная функция n переменных.

Рассмотрим некоторое (n+1)-мерное линейное пространство над полем вещественных чисел (так как функция вещественная). Выберем в этом пространстве любой базис ( ). Каждой точке функции сопоставим вектор: . Таким образом, мы будем иметь множество векторов линейного пространства, соответствующих точкам данной функции по указанному правилу. Точки соответствующего аффинного пространства будут образовывать некоторую поверхность.

Если в качестве линейного пространства взять евклидово пространство свободных геометрических векторов (направленных отрезков), а число аргументов функции f не превосходит 2, указанное множество точек можно изобразить наглядно в виде чертежа (графика). Если сверх того исходный базис взять ортонормированным, получим "школьное" определение графика функции.

Для функций 3 аргументов и более такое представление не применимо ввиду отсутствия у человека геометрической интуиции многомерных пространств.

Однако, и для таких функций можно придумать наглядное полугеометрическое представление (например каждому значению четвертой координаты точки сопоставить некоторый цвет на графике)

 

Пропорциональные величины. Если переменные  y  и  x  прямо пропорциональны, то функциональная зависимость между ними  выражается уравнением:             

y  = k x ,

                                                  

где  k  - постоянная величина ( коэффициент пропорциональности ).

График прямой пропорциональности – прямая линия, проходящая через начало координат и образующая с осью X  угол , тангенс которого равен  k : tan = k  ( рис.8 ). Поэтому, коэффициент пропорциональности называется также угловым коэффициентом. На рис.8 показаны три графика для  k = 1/3,  k = 1 и  k = 3 .

Линейная функция. Если переменные  y и x связаны уравнением 1-ой степени:

 

A x + B y = C ,

                          

где по крайней мере одно из чисел  A  или  B  не равно нулю, то графиком этой функциональной зависимости является прямая линия. Если C = 0, то она проходит через начало координат, в противном случае - нет. Графики линейных функций для различных комбинаций A, B, C показаны на рис.9.

Обратная пропорциональность. Если переменные  y  и  x обратно пропорциональны, то функциональная зависимость между ними выражается уравнением:

 

y = k / x ,

                                                 

где  k - постоянная величина.

Г рафик обратной пропорциональности – гипербола ( рис.10 ). У этой кривой две ветви. Гиперболы получаются при пересечении кругового конуса плоскостью ( о конических сечениях см. раздел «Конус» в главе «Стереометрия» ). Как показано на рис.10, произведение координат точек гиперболы есть величина постоянная, в нашем примере равная 1. В общем случае эта величина равна  k, что следует из уравнения гиперболы:  xy = k.

Основные характеристики и свойства гиперболы:

        - область определения функции:  x 0,  область значений:  y 0 ;

  - функция монотонная ( убывающая ) при  x < 0 и при  x > 0, но не 

 монотонная в целом из-за точки разрыва  x = 0);

  - функция неограниченная, разрывная в точке x = 0, нечётная, непериодическая;

  - нулей функция не имеет.

Квадратичная функция. Это функция:  y = ax 2 + bx + c, где  a, b, c - постоянные,  a 0. В простейшем случае имеем:  b = c = 0  и   y = ax 2. График этой функции квадратная парабола - кривая, проходящая через начало координат ( рис.11 ). Каждая парабола имеет ось симметрии OY, которая называется осью параболы. Точка O пересечения параболы с её осью называется вершиной параболы.

Квадратичная функция. Это функция:  y = ax 2 + bx + c, где  a, b, c - постоянные,  a 0. В простейшем случае имеем:  b = c = 0  и   y = ax 2. График этой функции квадратная парабола - кривая, проходящая через начало координат ( рис.11 ). Каждая парабола имеет ось симметрии OY, которая называется осью параболы. Точка O пересечения параболы с её осью называется вершиной параболы.

График функции  y = ax 2 + bx + c - тоже квадратная парабола того же вида, что и  y = ax 2, но её вершина лежит не в начале координат, а в точке с координатами:

Форма и расположение квадратной параболы в системе координат полностью зависит от двух параметров: коэффициента  a  при  x2 и дискриминанта D: D = b2 4ac. Эти свойства следуют из анализа корней квадратного уравнения (см. соответствующий раздел в главе «Алгебра»). Все возможные различные случаи для квадратной параболы показаны на рис.12.

О сновные характеристики и свойства квадратной параболы:

  - область определения функции:  < x+  ( т.e.  x R ), а область

     значений:( ответьте, пожалуйста , на этот вопрос сами ! );

  - функция в целом не монотонна, но справа или слева от вершины

     ведёт себя, как монотонная;

  - функция неограниченная, всюду непрерывная, чётная при  b = c = 0,

   и непериодическая;

- при D < 0 не имеет нулей.

П оказательная функция. Функция   y = ax, где  a - положительное постоянное число, называется показательной функцией. Аргумент  x принимает любые действительные значения;  в качестве значений функции рассматриваются только положительные числа, так как иначе мы имеем многозначную функцию. Так, функция  y = 81x имеет при  x = 1/4 четыре различных значения:  y = 3,  y = 3,  y = 3 i  и  y = 3 (проверьте, пожалуйста !). Но мы рассматриваем в качестве значения функции только  y = 3. Графики показательной функции для  a = 2  и  a = 1/2  представлены на рис.17. Они проходят через точку  ( 0, 1 ). При  a = 1 мы имеем график прямой линии, параллельной оси Х, т.e. функция превращается в постоянную величину, равную 1. При  a > 1 показательная функция возрастает, a при  0 < a < 1 – убывает. Основные характеристики и свойства показательной функции:

- область определения функции:  < x+  ( т.e. x R );

   область значений:  y > 0 ;

   - функция монотонна: возрастает при  a > 1 и убывает при  0 < a < 1;

   - функция неограниченная, всюду непрерывная, непериодическая;

   - нулей функция не имеет.

Л огарифмическая функция. Функция  y = log a x, где  a – постоянное положительное число, не равное 1, называется логарифмической. Эта функция является обратной к показательной функции; её график ( рис.18 ) может быть получен поворотом графика показательной функции вокруг биссектрисы 1-го координатного угла. 

Основные характеристики и свойства логарифмической функции:

- область определения функции: x > 0, а область значений:  < y+  

   ( т.e.  y R );

    - это монотонная функция: она возрастает при  a > 1 и убывает при 0 <   a < 1;

    - функция неограниченная, всюду непрерывная, непериодическая;

    - у функции есть один ноль:  x = 1.

Тригонометрические функции. При построении тригонометрических функций мы используем радианную меру измерения углов. Тогда функция  y = sin x представляется графиком ( рис.19 ). Эта кривая называется синусоидой.

 

График функции  y = cos x представлен на рис.20; это также синусоида, полученная в результате перемещения графика  y = sin x  вдоль оси Х  влево на 2

Из этих графиков очевидны характеристики и свойства этих функций:

- область определения:  < x +  область значений:  1   y +1;

    - эти функции периодические: их период 2 ;

- функции ограниченные  ( | y | , всюду непрерывные, не монотонные, но 

   имеющие так называемые интервалы монотонности, внутри которых они  

   ведут себя, как монотонные функции ( см. графики рис.19 и рис.20 );

- функции имеют бесчисленное множество нулей ( подробнее см. раздел 

   «Тригонометрические уравнения» ).

 

Графики функций  y = tan x  и  y = cot x  показаны соответственно на рис.21 и рис.22

     

      Из графиков видно, что эти функции: периодические ( их период ,

      неограниченные, в целом не монотонные, но имеют интервалы монотонности

      ( какие? ), разрывные ( какие точки разрыва имеют эти функции? ). Область      

      определения и область значений этих функций:

9.

 Обратные тригонометрические функции. Определения обратных 

 тригонометрических функций и их основные свойства приведены в

 одноимённом разделе в главе «Тригонометрия». Поэтому здесь мы ограничимся

 лишь короткими комметариями, касающимися их графиков, полученных 

 поворотом графиков тригонометрических функций вокруг биссектрисы 1-го

 координатного угла.

 

Функции  y = Arcsin x ( рис.23 ) и  y = Arccos x ( рис.24 ) многозначные, неограниченные; их область определения и область значений соответственно:  1   x +1  и  < y + . Поскольку эти функции многозначные, не

рассматриваемые в элементарной математике, в качестве обратных тригонометрических функций рассматриваются их главные значения:  y = arcsin x  и   y = arccos x; их графики выделены на рис.23 и рис.24 жирными линиями.

 

Функции  y = arcsin x  и  y = arccos x обладают следующими характеристиками и свойствами:

- у обеих функций одна и та же область определения:  1   x +1 ;

  их области значений:   /2   y /2  для  y = arcsin x  и  0   y для  y = arccos x;

- функции ограниченные, непериодические, непрерывные и монотонные

   ( y = arcsin x – возрастающая функция;  y = arccos x – убывающая );

- каждая функция имеет по одному нулю ( x = 0  у функции  y = arcsin x и

   x = 1  у функции  y = arccos x).

 

Функции  y = Arctan x ( рис.25 ) и  y = Arccot x ( рис.26 ) - многозначные, неограниченные функции; их область определения:  x + . Их главные значения  y = arctan x  и  y = arccot x рассматриваются в качестве обратных тригонометрических функций; их графики выделены на рис.25 и рис.26 жирными ветвями.

 

Функции  y = arctan x и  y = arccot x имеют следующие характеристики и свойства:

- у обеих функций одна и та же область определения:   x + ;

  их области значений:   /2 < y < /2  для  y = arctan x  и  0 < y <   для  y = arccos x;

- функции ограниченные, непериодические, непрерывные и монотонные

  ( y = arctan x – возрастающая функция;  y = arccot x – убывающая );

- только функция  y = arctan x имеет единственный ноль ( x = 0 );

  функция  y = arccot x нулей не имеет.

Композиция функций

Если даны два отображения и , где , то имеет смысл "сквозное отображение" из в , заданное формулой , , которое называется композицией функций и и обозначается .

Рис.1.30.Сквозное отображение из в

Таким образом, , при всех . Другое название композиции -- сложная функция (так как сквозное отображение "сложено" из отображений и ).

        Пример 1.18   Пусть , , и , . Тогда , и определена композиция

    

        Упражнение 1.3   Покажите, что если заменить множество в предыдущем примере на , то композиция снова будет определена, но равна теперь , а не .     

        Пример 1.19   Пусть , , и , . Тогда определена композиция , заданная формулой . По известной формуле приведения полученная композиция -- это косинус: при всех .     

        Замечание 1.5   Даже если для функций и имеют смысл обе композиции и (что бывает далеко не для любой пары функций и ), то функции и не обязаны совпадать; как правило, это не так.     

        Пример 1.20   Пусть и , . Тогда , а . Очевидно, что это разные функции: при всех , а принимает значение , например, при .     

Применяя композицию функций, которые сами могут получаться как композиции, мы можем получать сложные функции вида и более длинные композиции.

Вопрос33 Взаимно-однозначное соответствие между множествами. Обратное правило и обратная функция. Графики взаимно обратных функций. Определения, свойства и графики гиперболических функций. (тут уже начинается вынос мозга)

Мощностью конечного множества (множества, содержащего конечное число элементов) называется количество его элементов. Мощность множества A   обозначается m ( A ).

Пример 1

Определите мощность множества A  = {1, 3, 5, 7, 9} нечётных чисел.

Показать решение

Простым пересчётом элементов убеждаемся, что нечётных чисел всего 5, и потому m  ( A ) = 5.

Ответ. 5.

Ясно (да ну!), что понятие мощности конечных множеств позволяет сравнивать их по количеству элементов. Так, если A  = {1, 3, 5, 7, 9}, а  B  = {2, 4, 6, 8}, то  m  ( A ) = 5, а  m  ( B ) = 4 и потому m  ( A ) >  m  ( B ).

Однако если мы имеем дело с бесконечными множествами, то пересчитать элементы множества уже не удастся. Но иногда можно, как говорят, установить взаимно однозначное соответствие между двумя бесконечными множествами.

 

Говорят, что между множествами A и B установлено взаимно однозначное соответствие, если из элементов этих множеств можно составить пары ( a ,  b ), причем каждый элемент из A и каждый элемент из B входят в одну и только одну пару.

Множества, между которыми установлено взаимно однозначное соответствие, содержат одинаковое количество элементов.

 

Множества A и B называют равномощными , если между их элементами можно установить взаимно однозначное соответствие (ещё говорят: можно установить взаимно однозначное отображение множеств).

Мощность множества натуральных чисел обозначается א. Алеф א – первая буква еврейского алфавита, так обозначается наименьшая возможная для бесконечных множеств мощность.

 

Множества, равномощные множеству натуральных чисел, называются счётными множествами .

Пример 2

Множество натуральных чисел равномощно множеству нечётных чисел, так как между ними можно установить взаимно однозначное соответствие, например, по следующему правилу:

1 2 3... n ... ↕ ↕ ↕ ↕ 1 3 5... 2 n – 1...

Так как множество нечётных чисел является подмножеством натуральных чисел, то этот пример показывает, что бесконечное множество может быть равномощно своему подмножеству.

Пример 3

Множество положительных рациональных чисел счётно. Действительно, если представить каждое рациональное число в виде несократимой дроби и записать его в следующую таблицу, а затем пронумеровать, как указано на рисунке, то окажется, что множество рациональных положительных чисел действительно счётно.

1

Рисунок 4.1.2.1.

Пример 4

Любой отрезок [ a ;  b ] равномощен отрезку [0; 1]. Взаимно однозначное соответствие между ними устанавливает формула y  = ( b  −  a ) ·  x  +  a , где x    [0; 1],  y    [ a ;  b ].

Пример 5

Множества и счётны и потому равномощны. В самом деле, установим взаимно однозначное соответствие между ними по следующему правилу:

A ... ... ↕ ↕ ↕ ↕ ↕ ↕ ↕ N 1 2 3... n ... ↕ ↕ ↕ ↕ ↕ ↕ ↕ B 0 ... ...

Существуют и другие бесконечные множества, мощность которых больше, чем мощность счётных множеств. Так, множество всех точек отрезка [0; 1] не равномощно множеству натуральных чисел доказательство этой теоремы принадлежит немецкому математику Георгу Кантору.

Как было показано в примере 4, множество всех точек отрезка [0; 1] равномощно множеству точек отрезка любой длины. Легко показать равномощность множеств отрезка [ a ;  b ] и интервала ( a ;  b ), а также отрезка [ a ;  b ] и луча ( a ; +∞). Наконец, можно доказать равномощность множеств всех точек отрезка и квадрата.

Мощность множества всех действительных чисел (или, что то же, множества всех точек числовой оси) обозначается символом c (« континуум »). Поскольку множество всех действительных чисел несчётно, то א <  c .

Континуум – не самая большая из бесконечных мощностей. Так, мощность множества всех подмножеств точек числовой оси больше, чем мощность самого множества всех точек оси. Она обозначается 2 c и называется гиперконтинуумом .

Обратная функция. Теорема о существовании и непрерывности обратной функции. Понятие обратной функции. Пусть функция y=f(x), заданная на множестве X, обратима. Это значит, что функция f различным значениям аргумента ставит в соответствие различные значения функции, т.е. для любых x1,x2∈X : x1/=x2⇒f(x1)/=f(x2).  В этом случае для каждого y∈Y=f(X)  существует один и только один элемент x∈X такой, что y=f(x). А это означает, что на множестве Y определена функция g:Y→X , которую и называют обратной функцией к функции y=f(x) и обозначают: x=f−1(y). При этом очевидно, что функция f является обратной к функции f−1. Поэтому функции y=f(x) и x=f−1(y) называют взаимно обратными. Т.о., если функция f:X→Y , где Y=f(X), обратима, то для нее существует единственная обратная функция f−1:Y→X  и если y=f(x) то x=f−1(y), и если x=f−1(y), то y=f(x) и f−1(f(x))=x при любом x∈X , f−1(f(y))=y при любом y∈Y. График. Переход от функции y=f(x), x∈X , к обратной функции x=f−1(y), y∈Y  (если она существует), сводится лишь к измерению ролей множеств X и Y. Поэтому графики функций y=f(x) и x=f−1(y) на плоскости XOY совпадают. Но обычно и для обратной функции аргумент обозначают через y, т.е. записывают ее в видеy=f−1(x), x∈Y . Тогда график функции y=f−1(x) получается из графика прямой функции y=f(x) с помощью преобразования плоскости XOY, переводящей каждую точку (x,y) в точку (y,x), т.е. симметрией относительно прямой y=x. Обычно, говоря об обратной функции, заменяют x на y, а y на x (x↔y ) и пишут y=f−1(x). Очевидно, что исходная функция f(x)и обратная функция f−1(x) удовлетворяют соотношению:

f−1(f(x))=f(f−1(x))=x. Графики исходной и обратной функции получаются друг из друга зеркальным отображением относительно биссектрисы первого квадранта. Монотонные функции и их свойства. Пусть функция f(x)определена в некоторой области X. Функция называется возрастающей (убывающей) в этой области, если для любой пары принадлежащих ей значений x1и x2 из x1>x2 следуетf(x1)>f(x2) (f(x1)<f(x2)). Если же из x1>x2 следует f(x1)≥f(x2)  (f(x1)≤f(x2)) , то функцию называют неубывающей (невозрастающей). Иногда удобнее и в этом случае называть функцию возрастающей (убывающей) - но в широком смысле. Функции всех этих типов носят общее название монотонных.

Существование и непрерывность обратной функции. Теорема 1. Если функция y=f(x) строго возрастает (убывает) на множестве X, то для нее существует обратная функция x=f−1(y), которая определена на множестве Y=f(X) и является на Y строго возрастающей (убывающей). Доказательство. По условию функция f строго возрастает на множестве X. Это значит для любых x1,x2∈X и x1<x2 следует f(x1)<f(x2). Отсюда следует, что функция f обратима на X, следовательно, для нее существует обратная функция f−1:Y→X . Покажем, что функция f−1 строго возрастает на множестве Y. Пусть y1 и y2- любые точки из Y и y1<y2. Докажем, что x1=f−1(y1)<x2=f−1(y2). Допустим, чтоx1≥x2 . По условию функция f строго возрастает на X, поэтому из условия x1≥x2 вытекает неравенствоy1=f(x1)≥y2=f(x2) , что противоречит условию y1<y2. Т.о., условие строгой монотонности функции является достаточным для существования обратной функции. 

Теорема 2. Если функция y=f(x) строго возрастает (убывает) и непрерывна на промежутке I, то существует обратная функция x=f−1(y), которая определена на промежутке Ef=f(I) и является на Е, строго возрастающей (убывающей) и непрерывной. Доказательство. Для определенности предположим, что функция f строго возрастает на промежутке I. По следствию из 2-ой теоремы Больцано-Коши область значений Ef=f(I) непрерывной функции f тоже есть промежуток. В силу строгого возрастания функции f для каждого y∈E  существует единственная точка x∈I  такая, что f(x)=y. Следовательно для функции f существует обратная функция f−1 определенная на промежутке Е и с множеством значений I.

Покажем, что f−1 строго возрастает на Е. Пусть y1 и y2-- две произвольные точки из Е, такие, что y1<y2 и прообразами этих точек будут точки x1и x2. f−1(y1)=x1, и f−1(y2)=x2.

Поскольку f - строго возрастающая функция, то неравенство y1=f(x1)<f(x2)=y2 возможно тогда и только тогда когда x1<x2 или тоже самое, когда f−1(y1)<f−1(y2). В силу произвольности y1 и y2 ∈E делаем вывод, что функция f−1 - строго возрастает на множестве Е. Что и требовалось доказать.

1. Гиперболическими синусом, косинусом, тангенсом и котангенсом называются функции :

; ; . Областью определения функций shx , chx , thx является вся числовая ось; функция y=cthx не определена в точке х=0. Название гиперболических функций (синус, косинус, …) объясняется тем, что для них справедливы тождества ''похожие'' на тригонометрические:

ch(x± y)=chx · chy ± shx · shy , (1)

sh(x± y)=shx · chy± chx · shy , (2)

ch2x–sh2x=1 , (3)

ch2x=ch2x+sh2x , (4)

sh2x=2shx · chx . (5)

Тождества (2) и (5) аналогичны соответствующим формулам тригонометрии, а формулы (1) , (3) и (4) отличаются от тригонометрических только знаком. Доказываются тождества (1) – (5) непосредственной проверкой. Более подробно о тождествах для гиперболических функций изложено в разделе III.

 

2. Рассмотрим уравнение гиперболы:

Его можно записать в параметрическом виде, используя гиперболические функции (этим и объясняется их название).

Обозначим y= b·sht , тогда х2 / а2=1+sh2t =ch2t . Откуда x=± a·cht .

Таким образом мы приходим к следующим параметрическим уравнениям гиперболы :

 

x= ± a ·cht ,

у= в ·sht , – < t < . (6)

Рис. 1.

Знак ''+'' в верхней формуле (6) соответствует правой ветви гиперболы, а знак ''– '' - левой (см. рис. 1). Вершинам гиперболы А(– а ; 0) и В( а ; 0) соответствует значение параметра t=0.

Для сравнения можно привести параметрические уравнения эллипса, использующие тригонометрические функции :

x=а·cost ,

y=в·sint , 0 t 2p . (7)

3. Очевидно, что функция y=chx является четной и принимает только положительные значения. Функция y=shx – нечетная, т.к. :

.

Функции y=thx и y=cthx являются нечетными как частные четной и нечетной функции. Отметим, что в отличие от тригонометрических, гиперболические функции не являются периодическими.

4. Исследуем поведение функции y= cthx в окрестности точки разрыва х=0: Таким образом ось Оу является вертикальной асимптотой графика функции y=cthx . Определим наклонные (горизонтальные) асимптоты :

Следовательно, прямая у=1 является правой горизонтальной асимптотой графика функции y=cthx . В силу нечетности данной функции ее левой горизонтальной асимптотой является прямая у= –1. Нетрудно показать, что эти прямые одновременно являются асимптотами и для функции y=thx. Функции shx и chx асимптот не имеют.

5. Найдем производные основных гиперболических функций:

2) (chx)'=shx (показывается аналогично).

4)

Здесь так же прослеживается определенная аналогия с тригонометрическими функциями. Полная таблица производных всех гиперболических функций приведена в разделе IV.

6. Нетрудно вычислить вторые производные основных гиперболических функций:

1)

2)

3)

4)

7. Используя результаты п. 1-6, строим графики основных гиперболических функций:

Рис. 2

Рис. 3

Рис. 4

Рис. 5