
- •Лекция 1 Введение. Основные понятия и определения Основные задачи теории информационных систем.
- •Краткая историческая справка.
- •Основные понятия теории систем
- •Выбор определения системы.
- •Лекция 2 Основные понятия и определения Основное содержание первой лекции
- •Понятие информации
- •Открытые и закрытые системы
- •Модель и цель системы
- •Управление
- •Информационные динамические системы
- •Классификация и основные свойства единиц информации
- •Системы управления
- •Реляционная модель данных
- •Технические, биологические и др. Системы
- •Детерминированные и стохастические системы
- •Открытые и закрытые системы
- •Хорошо и плохо организованные системы
- •Классификация систем по сложности
- •Модели сложных систем управления
- •Структурная сложность
- •Иерархия
- •Многообразие
- •Уровни взаимодействия
- •Динамическая сложность
- •Случайность в сравнении с детерминизмом и сложностью
- •Шкалы времени
- •Теоретическое решение
- •Модели сложных систем управления (по Вавилову а.А)
- •Лекция 4 Закономерности систем Целостность
- •Интегративность
- •Коммуникативность
- •Иерархичность
- •Эквифинальность
- •Историчность
- •Закон необходимого разнообразия
- •Закономерность осуществимости и потенциальной эффективности систем
- •Закономерность целеобразования
- •Системный подход и системный анализ
- •Лекция 5 Уровни представления информационных систем
- •Методы и модели описания систем
- •Качественные методы описания систем
- •Методы типа мозговой атаки.
- •Методы типа сценариев.
- •Методы экспертных оценок.
- •Методы типа «Дельфи».
- •Методы типа дерева целей.
- •Морфологические методы.
- •Методика системного анализа.
- •Количественные методы описания систем
- •Лекция 6 Кибернетический подход к описанию систем
- •Моделирование систем
- •Лекция 7 Алгоритмы на топологических моделях.
- •Задачи анализа топологии
- •Представление информации о топологии моделей
- •Переборные методы Поиск контуров и путей по матрице смежности
- •Модифицированный алгоритм поиска контуров и путей по матрице смежности
- •Поиск контуров и путей по матрице изоморфности
- •Сравнение алгоритмов топологического анализа
- •Декомпозиция модели на топологическом ранге неопределенности
- •Сортировка модели на топологическом ранге неопределенности
- •Нахождение сильных компонент графа
- •Заключение
- •Лекция 8 Теоретико-множественное описание систем
- •Предположения о характере функционирования систем
- •Система, как отношение на абстрактных множествах
- •Временные, алгебраические и функциональные системы
- •Временные системы в терминах «вход — выход»
- •Лекция 9 Формы представления модели
- •Нормальная форма Коши
- •Системы нелинейных дифференциальных уравнений различных порядков
- •Гиперграфы
- •Лекция 10 Динамическое описание систем
- •Детерминированная система без последствий
- •Детерминированные системы без последствия с входными сигналами двух классов
- •Учет специфики воздействий
- •Детерминированные системы с последствием
- •Стохастические системы
- •Лекция 11 Агрегатное описание систем
- •Лекция 12 Рецепция информации. Свойства бистабильных систем
- •Устойчивость информационных нелинейных систем. Классификация стационарных состояний
- •Обратимые и необратимые операции.
- •Лекция 13 Концепции общей теории информации Общее понятие Информации
- •Эволюция информации
- •1. Неживые формы
- •2. Простейшие формы жизни
- •3. Клеточная форма жизни
- •4. Многоклеточные формы жизни
- •5. Социальные образования
- •Свойства информации и законы ее преобразования
- •1. Прием информационных кодов
- •2. Интерпретация информации
- •3. Структура компонент данных имвс
- •4. Структура компонент шаблонов действий имвс
- •5. Реализация информации
- •7. Навигация данных в структуре имвс
- •Заключение
- •Лекция 14 Новая Сеть
- •Встречайте биоинформатику
- •Лекция 15 Архитектуры и технологии разработки интероперабельных систем Введение
- •Потребности применений
- •Компоненты архитектуры
- •Интеграция corba и www-технологий
- •Семантическая интероперабельность
- •Системный анализ
- •Определение требований
- •Оценка осуществимости
- •Оценка риска
- •Логическая модель
- •Метод прототипа
- •Выяснение проблем заказчика
- •Проектирование
- •Нисходящее проектирование
- •Принципы уровней абстракции:
- •Моделирование данных
- •Реализация
- •Повышение надежности системы
- •Тестирование
- •Принципы тестирования
- •Виды тестирования:
- •Отладка
- •Внедрение
- •Лекция 17 Что Business Intelligence предлагает бизнесу
- •Данные, информация и технологии
- •Лекция 18 Данные vs. Информация
- •Литература
Сортировка модели на топологическом ранге неопределенности
Применяемые различные математические методы, переключения между ними в процессе моделирования, требуют различных подходов к упорядочиванию элементов в подсистемах модели, иначе говоря, записи уравнений. При использовании явных методов традиционно первыми решают алгебраические уравнения, то есть фактически происходит упорядочивание системы уравнений по этому признаку. Предлагаемые адаптивные алгоритмы требуют построения списков на основании причинно-следственных взаимоотношений. Неявные методы, строго говоря, не предполагают упорядочивания элементов, но для повышения скорости расчетов целесообразно провести определенную сортировку. Порядок следования уравнений для всех этих методов различен.
Наиболее сложными и трудоемкими являются неявные методы. Поэтому целесообразно в качестве основного порядка следования уравнений в подсистемах принять порядок элементов, используемый для неявных методов. Порядок следования уравнений для остальных методов записывается в индексные массивы. При переключении с одного алгоритма на другой новые перестановки не производятся и порядок расположения элементов берется из соответствующего массива индексов.
Основные потери быстродействия при численном интегрировании по неявной схеме возникают при решении линейной системы уравнений [85]. Для ускорения этого процесса предлагается на топологическом уровне представления модели расположить уравнения (номера элементов) так, чтобы ненулевые элементы в матрице Якоби (3.9) были расположены в заранее определенном порядке следования. Такое упорядочивание элементов позволяет использовать быстрые, специализированные алгоритмы решения получаемых на каждой итерации систем линейных уравнений [72, 86, 106].
Предлагаемый алгоритм [А14, А17, А24, А35, А44], схема которого представлена на рис. 32, предполагает приведение системы к форме, при которой образовывается ленточная матрица (рис. 33). Широкий класс алгоритмов для работы с подобными матрицами представлен во многих работах. Кроме того, необходимо отметить, что приведение к матрице специального вида происходит на уровне топологических моделей, а не на вычислительной стадии расчета.
На рис. 34-37 представлены результаты проведения предложенной сортировки для тестовой моделей и модели ТГУ-532, показаны матрицы смежности исходных и преобразованных моделей.
Алгоритм построен на основе традиционных обменных методов сортировок. В блоке 1 формируется булевская матрица ненулевых значений матрицы Якоби. Ненулевые элементы в матрице Якоби образуются за счет переменных, являющихся причиной и переменных, являющихся следствием каждого уравнения. Очевидно, что это можно записать в матричной форме как:
,
где I - единичная матица, C - матрица смежности, т - символ транспонирования, A - матрица наличия ненулевых значений матрицы Якоби. Учитывая, что большинство элементов системы составляют элементы типа SISO (один вход и один выход), то матрица будет сильно разряжена.
Рисунок 24 Блок схема алгоритма сортировки на топологических моделях
В блоке 2 создается копия матрицы A, на которой производятся перестановки (r). В блоках 3, 5 организуют основной цикл по переменной flag, устанавливаемый в блоке 4 в нуль. В матрице A, в блоке 5, определяется максимальное расстояние от ненулевого элемента до единичной диагонали lmax, и его номер i. Блоки 6,7,14 организуют цикл, где N размерность системы. Блок 9 производит обмен в матице r i и j элементов. При этом, в матрице r, определяется максимальное расстояние до ненулевого элемента (блок 9). Если оно больше определенного lmax, то присваивается новое значение lmax и запоминается при какой перестановке строк оно было достигнуто. Переменная flag устанавливается в 1 (блоки 10,11,12). В блоке 13 возвращается исходное значение матрице A. После завершения цикла (6,7,14) проверяется значение переменной flag. Если flag == 1 (истина) то производятся перестановки в СНГГ, и в соответствующих ему матричных формах представлений C,A (блоки 15,16). Если была произведена перестановка, то работа алгоритма возвращается на п. 4. Если перестановка не была произведена, то получено минимальное значение lmax и алгоритм завершает свою работу.
Подобные перестановки для упрощения расчетной формы модели были предложены Д. Стюардом, а также рассмотрены в [119]. Предлагаемый в них алгоритм предполагает приведение вида матрицы к блочно треугольному виду. Это упрощает расчеты, но не позволяет без потери информации перейти на более быстрые методы, так как матрица остается почти треугольной, а не треугольной. Кроме того, формальный принцип образования диагональных блоков и отказ от учета влияния “отсоединенных частей”, может привести к потере существенной информации о поведении модели.
Рисунок 25 Ленточная матрица
Рисунок 26 Тестовая модель и ее исходная матрица смежности
i j
i
j
Рисунок 27 Иллюстрация сортировки и ленточная матрица отсортированной системы
Пример, показанный на рис. 35, иллюстрирует работу этого алгоритма. Он позволяет использовать для решения линеаризованной системы ленточные методы, за счет чего можно достигнуть увеличения скорости расчета. Используя оценки скорости вычислений для ленточных матриц, приведенные в [86] и проверенные рядом экспериментов, эффект от применения этакого подхода можно оценить как
,
где N - размерность системы, а 2*M+1 - ширина ленты (на рис. 33 M=lmax).
Для примера, приведенного на рис. 35, в результате предлагаемой сортировки, представлены на рис. 36. Налицо улучшения по сравнению с традиционными методами.
Для тестовой модели, которая представлена на рис. 34 в виде графа и матрицы смежности, предлагаемая сортировка порядка уравнений (номеров переменных) приводит матрицу к виду, показанному на рис. 35. Данное преобразование позволяет получить вычислительный эффект, связанный с увеличением скорости расчетов, в
Рисунок 28
Рисунок 29 Матрица смежности исходной и отсортированной модели
Рисунок 30 Диаграмма графа модели структурно-сложной нелинейной системы управления турбоагрегата электростанции
Еще лучше достоинства этого подхода видны на примере системы представленной на рис. 38. Результаты сортировки показаны на рис. 37. Эффект от применения предлагаемой сортировки составил:
раз.
Предложенный алгоритм сортировки элементов приводит к получению матрицы Якоби известного вида, что позволяет использовать более быстрые алгоритмы решения систем нелинейных уравнений в процессе моделирования по неявной схеме. Данный подход отличается от встречаемых в литературе тем, что учитываются все переменные, без исключения части из них, соответствующих слабым связям. Кроме того, приведение к матрице специального вида происходит на уровне топологических моделей, а не на вычислительной стадии расчета. Эффект от применения такой сортировки, выполняемой однократно, получается на каждой итерации расчета для каждого момента времени.