
- •Лекция 1 Введение. Основные понятия и определения Основные задачи теории информационных систем.
- •Краткая историческая справка.
- •Основные понятия теории систем
- •Выбор определения системы.
- •Лекция 2 Основные понятия и определения Основное содержание первой лекции
- •Понятие информации
- •Открытые и закрытые системы
- •Модель и цель системы
- •Управление
- •Информационные динамические системы
- •Классификация и основные свойства единиц информации
- •Системы управления
- •Реляционная модель данных
- •Технические, биологические и др. Системы
- •Детерминированные и стохастические системы
- •Открытые и закрытые системы
- •Хорошо и плохо организованные системы
- •Классификация систем по сложности
- •Модели сложных систем управления
- •Структурная сложность
- •Иерархия
- •Многообразие
- •Уровни взаимодействия
- •Динамическая сложность
- •Случайность в сравнении с детерминизмом и сложностью
- •Шкалы времени
- •Теоретическое решение
- •Модели сложных систем управления (по Вавилову а.А)
- •Лекция 4 Закономерности систем Целостность
- •Интегративность
- •Коммуникативность
- •Иерархичность
- •Эквифинальность
- •Историчность
- •Закон необходимого разнообразия
- •Закономерность осуществимости и потенциальной эффективности систем
- •Закономерность целеобразования
- •Системный подход и системный анализ
- •Лекция 5 Уровни представления информационных систем
- •Методы и модели описания систем
- •Качественные методы описания систем
- •Методы типа мозговой атаки.
- •Методы типа сценариев.
- •Методы экспертных оценок.
- •Методы типа «Дельфи».
- •Методы типа дерева целей.
- •Морфологические методы.
- •Методика системного анализа.
- •Количественные методы описания систем
- •Лекция 6 Кибернетический подход к описанию систем
- •Моделирование систем
- •Лекция 7 Алгоритмы на топологических моделях.
- •Задачи анализа топологии
- •Представление информации о топологии моделей
- •Переборные методы Поиск контуров и путей по матрице смежности
- •Модифицированный алгоритм поиска контуров и путей по матрице смежности
- •Поиск контуров и путей по матрице изоморфности
- •Сравнение алгоритмов топологического анализа
- •Декомпозиция модели на топологическом ранге неопределенности
- •Сортировка модели на топологическом ранге неопределенности
- •Нахождение сильных компонент графа
- •Заключение
- •Лекция 8 Теоретико-множественное описание систем
- •Предположения о характере функционирования систем
- •Система, как отношение на абстрактных множествах
- •Временные, алгебраические и функциональные системы
- •Временные системы в терминах «вход — выход»
- •Лекция 9 Формы представления модели
- •Нормальная форма Коши
- •Системы нелинейных дифференциальных уравнений различных порядков
- •Гиперграфы
- •Лекция 10 Динамическое описание систем
- •Детерминированная система без последствий
- •Детерминированные системы без последствия с входными сигналами двух классов
- •Учет специфики воздействий
- •Детерминированные системы с последствием
- •Стохастические системы
- •Лекция 11 Агрегатное описание систем
- •Лекция 12 Рецепция информации. Свойства бистабильных систем
- •Устойчивость информационных нелинейных систем. Классификация стационарных состояний
- •Обратимые и необратимые операции.
- •Лекция 13 Концепции общей теории информации Общее понятие Информации
- •Эволюция информации
- •1. Неживые формы
- •2. Простейшие формы жизни
- •3. Клеточная форма жизни
- •4. Многоклеточные формы жизни
- •5. Социальные образования
- •Свойства информации и законы ее преобразования
- •1. Прием информационных кодов
- •2. Интерпретация информации
- •3. Структура компонент данных имвс
- •4. Структура компонент шаблонов действий имвс
- •5. Реализация информации
- •7. Навигация данных в структуре имвс
- •Заключение
- •Лекция 14 Новая Сеть
- •Встречайте биоинформатику
- •Лекция 15 Архитектуры и технологии разработки интероперабельных систем Введение
- •Потребности применений
- •Компоненты архитектуры
- •Интеграция corba и www-технологий
- •Семантическая интероперабельность
- •Системный анализ
- •Определение требований
- •Оценка осуществимости
- •Оценка риска
- •Логическая модель
- •Метод прототипа
- •Выяснение проблем заказчика
- •Проектирование
- •Нисходящее проектирование
- •Принципы уровней абстракции:
- •Моделирование данных
- •Реализация
- •Повышение надежности системы
- •Тестирование
- •Принципы тестирования
- •Виды тестирования:
- •Отладка
- •Внедрение
- •Лекция 17 Что Business Intelligence предлагает бизнесу
- •Данные, информация и технологии
- •Лекция 18 Данные vs. Информация
- •Литература
Иерархичность
Рассмотрим иерархичность как закономерность построения всего мира и любой выделенной из него системы. Иерархическая упорядоченность пронизывает все, начиная от атомно-молекулярного уровня и кончая человеческим обществом. Иерархичность как закономерность заключается в том, что закономерность целостности проявляется на каждом уровне иерархии. Благодаря этому на каждом уровне возникают новые свойства, которые не могут быть выведены как сумма свойств элементов. При этом важно, что не только объединение элементов в каждом узле приводит к появлению новых свойств, которых у них не было, и утрате некоторых свойств элементов, но и что каждый член иерархии приобретает новые свойства, отсутствующие у него в изолированном состоянии.
Таким образом, на каждом уровне иерархии происходят сложные качественные изменения, которые не всегда могут быть представлены и объяснены. Но именно благодаря этой особенности рассматриваемая закономерность приводит к интересным следствиям. Во-первых, с помощью иерархических представлений можно отображать системы с неопределенностью.
Во-вторых, построение иерархической структуры зависит от цели: для многоцелевых ситуаций можно построить несколько иерархических структур, соответствующих разным условиям, и при этом в разных структурах могут принимать участие одни и те же компоненты. В-третьих, даже при одной и той же цели, если поручить формирование иерархической структуры разным исследователям, то в зависимости от их предшествующего опыта, квалификации и знания системы они могут получить разные иерархические структуры, т. е. по-разному разрешить качественные изменения на каждом уровне иерархии.
Эквифинальность
Это одна из наименее исследованных закономерностей. Она характеризует предельные возможности систем определенного класса сложности. Л. фон Берталанфи, предложивший этот термин, определяет эквифинальность применительно к «открытой» системе как способность (в отличие от состояний равновесия в закрытых системах) полностью детерминированных начальными условиями систем достигать не зависящего от времени состояния (которое не зависит от ее исходных условий и определяется исключительно параметрами системы). Потребность во введении этого понятия возникает начиная с некоторого уровня сложности, например биологические системы.
В настоящее время не исследован ряд вопросов этой закономерности: какие именно параметры в конкретных системах обеспечивают свойство эквивалентности? как обеспечивается это свойство? как проявляется закономерность эквивалентности в организационных системах?
Историчность
Время является непременной характеристикой системы, поэтому каждая система исторична, и это такая же закономерность, как целостность, интегративность и др. Легко привести примеры становления, расцвета, упадка и даже смерти биологических и общественных систем, но для технических и организационных систем определить периоды развития довольно трудно.
Основа закономерности историчности — внутренние противоречия между компонентами системы. Но как управлять развитием или хотя бы понимать приближение соответствующего периода развития системы — эти вопросы еще мало исследованы.
В последнее время на необходимость учета закономерности историчности начинают обращать больше внимания. В частности, в системотехнике при создании сложных технических комплексов требуется на стадии проектирования системы рассматривать не только вопросы разработки и обеспечения развития системы, но и вопрос, как и когда нужно ее уничтожить. Например, списание техники, особенно сложной — авиационной, «захоронение» ядерных установок и др.