Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Экология.docx
Скачиваний:
275
Добавлен:
15.12.2019
Размер:
786.95 Кб
Скачать

6. Основные закономерности движения вещества и энергии в биосфере. Особенности биохимических круговоротов веществ в биосфере.

Все вещества на Земле находятся в биохимическом кpуговоpоте – большом (геологическом) и малом (биотическом). В большом круговороте, длящемся миллионы лет, участвуют горные породы, которые выветриваются, сносятся в Мировой океан, образуют напластования и в процессе перемещения морей, океанов, материков могут возвратиться на сушу, где снова подвергаются выветриванию. С появлением на Земле живой материи химические элементы непрерывно циркулируют в биосфере, переходя из внешней среды в организмы и опять во внешнюю среду.В этом малом кpуговоpоте, являющемся частью большого, участвуют питательные вещества почвы, вода, углеpод, котоpые используются pастениями для постpоения их тела и жизненных пpоцессов, а затем – на те же задачи животных-консументов; далее, пpодукты pаспада всего оpганического вещества pазлагаются почвенной микpофлоpой и мезофауной (бактеpии, гpибы, чеpви и дp.) до минеpальных компонентов и снова поступают в pастения. Этот кpуговоpот называется биогеохимическим циклом. Основными биогеохимическими циклами являются круговороты кислорода, углерода, воды, азота, фосфора, серы и других биогенных элементов.

Круговорот кислорода

В добиологический период существования Земли атмосфера состояла в основном из водяного пара, углекислого газа, азота и некоторых других газов. Кислород в более или менее значительных количествах начал накапливаться в атмосфере после распространения фотосинтезирующих организмов – около 2 млрд. лет тому назад. По мере возрастания количества кислорода в атмосфере он частично трансформируется под действием ультрафиолетового излучения в озон. Все возрастающий слой озона усиливал свои защитные функции. Соответственно росло количество хлорофилловых организмов, главным образом фитопланктона, которые освобождали новые порции кислорода. В последние 20 миллионов лет содержание кислорода в атмосфере стабилизировалось. Современная атмосфера содержит около 1/20 части кислорода, имеющегося в биосфере. По содержанию в атмосфере он является вторым после азота газом. Однако именно потому, что кислород содержится в земной коре повсеместно, экологи уделяют его круговороту меньше внимания, чем круговоротам углерода, азота, фосфора и др. В атмосфере кислород содержится в виде О2, СО2, О3, в воде – в растворенном виде как газ и в соединении с водородом – Н2О, в литосфере - в форме различных оксидов (Fe2O3, Na2O, Mg O, SiO2, K2O и т.д.) и солей (CaCO3 и др.). Самый большой фонд кислорода находиться у поверхности Земли в виде углекислого кальция осадочных пород, но за исключением небольшого количества, освобождаемого в результате вулканической деятельности, он недоступен в этом виде живым организмам

Круговорот кислорода

В биохимическом круговороте участвует в основном атмосферный кислород. Образование свободного кислорода происходит главным образом в результате фотосинтеза растений (рисунок 1.9), а потребление – в ходе дыхания, реакции окисления (в том числе сжигания топлива) и других химических преобразований. Общее количество свободного кислорода оценивается в 1,18*1015т. Это количество накопилось за все время существования земной растительности. Сейчас свободный кислород образуется со скоростью примерно 1,55*109 т/год, а расходуется со скоростью около 2,1610 т/год. Таким образом, расход кислорода больше его поступления в атмосферу. Пока усиление техногенного потребления кислорода, а также вырубка лесов не привели к заметному снижению содержания свободного кислорода в атмосфере, но наметившаяся тенденция этого процесса в перспективе опасна. Зеленые растения освобождают в год около 1/2500 содержания кислорода в атмосфере, поэтому время его круговорота в атмосфере составляет примерно 2500 лет.

Круговорот углерода

Биологический круговорот углерода проще круговорота кислорода, так как в нем участвуют только органические соединения и диоксид углерода. Фонды углерода в атмосфере обширны. Основная его масса аккумулирована в карбонатных отложениях дна океана (1,3*1016 т), в кристаллических породах (1*1016 т), каменном угле и нефти (0,34*1016 т) В атмосфере углекислого газа относительно немного (1,3*1012 т.), менее 1/10000 общего запаса углерода. Аккумулированный углерод принимает участие в медленном геологическом круговороте Земли. Влияние этого круговорота на краткосрочное функционирование экосистемы незначительно. Поэтому жизнь на Земле и газовый баланс атмосферы поддерживаются относительно небольшим количеством углерода, участвующего в малом круговороте. Фотосинтез и дыхание полностью комплементарны. (от лат. «complementum», дополнение). Весь ассимилированный в процессе фотосинтеза углерод включается в углеводы, а в процессе дыхания весь углерод, содержащийся в органических соединениях, превращается в диоксид углерода, (рисунок 1.10). Биологический круговорот углерода протекает по схеме: биоассимиляция углерода из атмосферы, водной или наземной среды растениями – потребление органических соединений животными – окисление органических веществ до углекислого газа в процессе дыхания и разложения отходов – возврат углекислого газа в атмосферу. Если принять за 100% углерод, ассимилированный растениями в ходе фотосинтеза, то примерно 30% возвращается в фонд атмосферного углекислого газа в результате дыхания растений, а остальные 70% обеспечивают дыхание и продукцию животных, бактерий и грибов в растительноядных и детритных пищевых цепях.

В наземных экосистемах в круговорот вовлекается ежегодно 12% содержащегося в атмосфере углекислого газа. Поэтому углерод сравнительно быстро циркулирует между атмосферой, гидросферой и живыми организмами. Время переноса атмосферного углерода равно примерно восьми годам. В связи с этим система круговорота атмосферного углерода значительно более чувствительна к внешним воздействиям, чем таковая кислорода. С середины XIX в. ускорился процесс перехода углекислого газа в атмосферу за счет сжигания топлива. Его содержания в атмосфере увеличилось на 22% и продолжает расти. Такое положение вызывает серьезную озабоченность, так как нарушается сложившееся в природе энергетическое равновесие.

Круговорот азота

Азот – один из главных биогенных элементов. Основным резервуаром газообразного азота служит атмосфера (78% объема воздуха). Однако в отличие от углекислого газа круговорот азота связан с рядом особенностей. Во-первых, усваивать азот из воздуха могут только отдельные виды так называемых азотфиксирующих организмов – некоторые сине-зеленые водоросли и симбиотические бактерии бобовых растений. Во-вторых, являясь химически весьма инертным, азот не принимает непосредственного участия, как углерод, в высвобождении энергии при дыхании, он только входит в состав белков и нуклеиновых кислот. В-третьих, разложение азотсодержащих веществ с выделением газообразного азота осуществляется, как правило, в несколько стадий с помощью целого ряда специализированных микроорганизмов. В связи с этим большая часть биохимических превращений происходит в почве, где доступность азота растениям облегчается растворимостью его неорганических соединений. Содержание азота в тканях живых организмов около 3%. В окружающую среду органический азот попадает в виде аминогруппы NH2 или мочевины CO(NH2)2. Стадии трансформации азотсодержащих веществ в приемлемую для растений форму представлены на рисунке 1.11. Процессы аммонификации и нитрификации происходят при участии специализированных бактерий. При недостатке кислорода в почве бактерии могут использовать кислород нитратов и нитритов. В процессе денитрификации азот переводиться в газообразное состояние и частично фиксируется клубеньковыми растениями, а остальная часть удаляется из активных фондов почвы и попадает в виде свободного азота в атмосферу. В естественных условиях процессы связывания и освобождения азота уравновешивают друг друга. Искусственное внесение азота с удобрениями достигло 30 млн. т. в год и сравнялось с естественным потоком азота в биосфере, что привело к избытку азота в некоторых почвах и водоемах. Однако глобального нарушения круговорота азота пока не произошло.

Круговорот фосфора

К круговоротам основных химических элементов, имеющих газовую фазу, примыкают так называемые осадочные круговороты. Минеральный фосфор – редкий элемент в биосфере, его содержание в земной коре не превышает 1%.

Движение энергии в биосфере существенно отличается от движения вещества. Согласно принципу роста энтропии поток энергии направлен всегда в одну сторону, круговорот энергии невозможен. Живое вещество уменьшает энтропию части энергии, аккумулируя ее в своих структурах. Но большая часть энергии, проходя через биосферу, деградирует и покидает планету в виде низкокачественной тепловой энергии. Энергия может накапливаться, затем снова высвобождаться, но ее нельзя использовать вторично. В отличие от энергии, которая однажды использована организмом, превращается в тепло и теряется, вещества в биосфере циркулируют, создавая биогеохимические круговороты. круговорот воды в биосфере Растения используют водород воды при фотосинтезе в построении органических соединений, выделяя молекулярный кислород. В процессах дыхания всех живых существ, при окислении органических соединений вода образуется вновь Круговорот кислорода в биосфере Своей уникальной атмосферой с высоким содержанием свободного кислорода Земля обязана процессу фотосинтеза. С круговоротом кислорода тесно связано образование озона в высоких слоях атмосферы. Кислород освобождается из молекул воды и является по сути побочным продуктом фотосинтетической активности растений. Абиотическим путем кислород возникает в верхних слоях атмосферы за счет фотодиссоциации паров воды, но этот источник составляет лишь тысячные доли процента от поставляемых фотосинтезом. Круговорот углерода в биосфере Углерод как химический элемент является основой жизни. Он может разными способами соединяться со многими другими элементами, образуя простые и сложные органические молекулы, входящие в состав живых клеток. Круговорот азота в биосфере В атмосфере и живом веществе содержится менее 2% всего азота на Земле, но именно он поддерживает жизнь на планете. Азот входит в состав важнейших органических молекул — ДНК, белков, липопротеидов, АТФ, хлорофилла и др. В растительных тканях его соотношение с углеродом составляет в среднем 1 : 30, а в морских водорослях I : 6. Биологический цикл азота поэтому также тесно связан с углеродным. Круговорот фосфора в биосфере Этот элемент, необходимый для синтеза многих органических веществ, включая АТФ, ДНК, РНК, усваивается растениями только в виде ионов ортофосфорной кислоты (Р034+). Он относится к элементам, лимитирующим первичную продукцию и на суше, и особенно в океане, поскольку обменный фонд фосфора в почвах и водах невелик. Круговорот этого элемента в масштабах биосферы незамкнут. Круговорот серы в биосфере Круговорот серы, необходимой для построения ряда аминокислот, отвечает за трехмерную структуру белков, поддерживается в биосфере широким спектром бактерий. В отдельных звеньях этого цикла участвуют аэробные микроорганизмы, окисляющие серу органических остатков до сульфатов, а также анаэробные редукторы сульфата, восстанавливающие сульфаты до сероводорода. Кроме перечисленных группы серобактерий окисляют сероводород до элементарной серы и далее до сульфатов. Растения усваивают из почвы и воды только ионы SO2-4.