Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
АААААААААААА.docx
Скачиваний:
1
Добавлен:
01.03.2025
Размер:
212.22 Кб
Скачать

Практическое задание №3 Перевод из двоичной системы счисления в шестнадцатеричную (восьмеричную) и из шестнадцатеричной (восьмеричной) в двоичную. Умножение и деление двоичных чисел

Цель работы:

  • научиться переводить числа из двоичной системы счисления в восьмеричную и шестнадцатеричную и наоборот;

  • научиться производить деление и умножение чисел в двоичной системе счисления;

ТЕОРИТИЧЕСКАЯ ЧАСТЬ

Шестнадцатеричный и восьмеричный коды используются для более компактной и удобной записи двоичных чисел. Так, программирование в машинных кодах осуществляется в большинстве случаев в шестнадцатеричном коде. Правила перевода для шестнадцатеричной и восьмеричной системы структурно одинаковы, отличия для восьмеричной системы отображаются в скобках.

Двоичная запись числа делится на группы по четыре (три) двоичных знака влево и вправо от запятой, отделяющей целые и дробные части Неполные крайние группы (если они есть) дополняются нулями до четырех (трех) знаков. Каждая группа заменяется одним шестнадцатеричным (восьмеричным) знаком в соответствии с кодом группы (табл. 1).

Таблица 1 Соответствие двоичных групп, шестнадцатеричных и восьмеричных знаков

Двоичная группа

Шестнадцатеричный знак

Десятичный эквивалент

Двоичная группа

Восьмеричный знак

0000

0

0

000

0

0001

1

1

001

1

0010

2

2

010

2

0011

3

3

011

3

0100

4

4

100

4

0101

5

5

101

5

0110

6

6

110

6

0111

7

7

111

7

1000

8

8

1001

9

9

1010

A

10

1011

B

11

1100

C

12

1101

D

13

1110

E

14

1111

F

15

Примеры:

  • перевод в шестнадцатеричную систему:

11110000001010,01011112=0011 1100 0000 1010,01011110

= 3С0А,5Е16

  • перевод в восьмеричную систему:

1100000110,101112=001 100 000 110, 101110

Перевод из шестнадцатеричной (восьмеричной) системы в двоичную

Обычно программы в машинных кодах записаны в шестнадцатеричной системе счисления, реже - в восьмеричной. При необходимости отдельные числа такой программы записываются в двоичном коде, например, при рассмотрении форматов регистров, кодов операции команд и т.п. В этом случае нужен обратный перевод из шестнадцатеричной (восьмеричной) системы счисления в двоичную по следующему правилу.

Каждая цифра (без всяких сокращений!) шестнадцатеричного ( восьмеричного ) числа заменяется одной двоичной группой из четырех ( трех ) двоичных знаков.

Примеры:

  • для шестнадцатеричного числа

127,В16=000100100111,10101102=100100111,1011011

  • для восьмеричного числа:

147,5548=001100111,1011011002=1100111,10110112

Как показано в примерах, крайние нули слева и справа при желании можно не писать, но такое сокращение делается уже после перевода в двоичную систему.

Умножение двоичных чисел

Умножение производится по тем же правилам, что и для десятичных с помощью таблиц двоичного умножения и сложения.

Таблица двоичного умножения

0*0=1

0*1=0

1*0=0

1*1=1

Рассмотрим пример:

Умножение производится аналогично умножению десятичных чисел, после чего складываем числа, полученных в результате перемножения.

Деление двоичных чисел

Деление производится по тем же правилам, что и для десятичных. При этом используется двоичное умножение и вычитание.

Пример. 1100.011 : 10.01=?

Результат 1100.011 : 10.01=101.1.

Задание:

Разгадайте кроссворд:

По вертикали:

  1. 778

  2. 768

  3. 3310

  4. 618

  5. 78

  6. F16

По горизонтали:

  1. 2016

  2. 2A16

  3. B16

  4. 516

  5. 3110

  6. 2510

Контрольные вопросы:

  1. Для чего и почему используют восьмеричные и шестнадцатеричные коды?

  2. Расскажите как умножаются и делятся числа в двоичной системе?