лекции 1 курс. Богданов А.А
.pdf
Generated by Foxit PDF Creator © Foxit Software
http://www.foxitsoftware.com For evaluation only.
Дифракция. 27.10
Разобьем волновую поверхность на кольцевые зоны, аналогичные зонам Френеля, но гораздо меньше по ширине ( разность хода от краев зоны до точки Р составляет одинаковую для всех зон малую долю λ). Колебание, создаваемое в точке Р каждой из зон, изобразим в виде вектора, длина которого равна амплитуде колебания, а угол, образуемый вектором с направлением принятым за начало отсчета, дает начальную фазу колебания. В силу разбиения зон два любых соседних вектора будут повернуты друг относительно друга на один угол. Также амплитуда при переходе от зоны к зоне уменьшается. Следовательно, векторная диаграмма, получаемая при сложении колебаний возбуждаемых отдельными зонами, будет иметь вид спирали.
Generated by Foxit PDF Creator © Foxit Software http://www.foxitsoftware.com For evaluation only.
Лекция 28 Дифракция Френеля от простейших преград. Дифракция от круглого
отверстия. Дифракция Френеля от простейших преград. Дифракция от непрозрачного круглого диска. Дифракционная решетка.
Метод расчёта с помощью зон Френеля интенсивности света в точке наблюдения применим для анализа задач дифракции электромагнитных волн на простых по форме препятствиях .
Пусть экран с отверстием радиуса r0 расположен так, так что центр отверстия расположен на прямой, перпендикулярной плоскости экрана с отверстием, соединяющей точку наблюдения P и точку источника S. Разобьем поверхность волнового фронта, падающего на отверстие, на зоны Френеля по отношению к точке наблюдения P. Будем называть открытыми такие зоны Френеля, которые располагаются внутри отверстия. Соответственно зоны Френеля, попадающие на поверхность непрозрачного экрана, называются закрытыми.
Generated by Foxit PDF Creator © Foxit Software
http://www.foxitsoftware.com For evaluation only.
Дифракция. 28.2
Если размер отверстия во много раз меньше расстояний от экрана до источника a и от экрана до точки наблюдения b, то можно найти число m открытых отверстием зон Френеля:
Generated by Foxit PDF Creator © Foxit Software
http://www.foxitsoftware.com For evaluation only.
Дифракция. 28.3
Суммарная амплитуда в точке наблюдения есть
A = A1 – A2 + A3 – A4 + ... ±Am = 0.5(A1±Am)
Амплитуды волн зон Френеля при их небольшом числе можно считать примерно одинаковыми. По этой причине в точке Р будет либо максимум, либо минимум интенсивности дифрагированной волны от отверстия в зависимости соответственно от нечётности или чётности числа открытых зон Френеля.
Generated by Foxit PDF Creator © Foxit Software
http://www.foxitsoftware.com For evaluation only.
Дифракция. 28.5
Пусть свет из точки источника S освещает непрозрачный диск радиуса r0, за которым на прямой, перпендикулярной плоскости диска и проведенной через его центр, располагается точка наблюдения P. Как и выше, будем считать, что размер диска во много раз меньше расстояний от диска до источника a и от диска до точки наблюдения b.
Generated by Foxit PDF Creator © Foxit Software
http://www.foxitsoftware.com For evaluation only.
Дифракция. 28.6
Предположим, что диск из точки наблюдения P закрывает m зон Френеля. Тогда амплитуда света A в точке наблюдения будет равна алгебраической сумме амплитуд волн Am+1,Am+2 ,Am+3 ,.... открытых зон Френеля:
A=Am+1-Am+2 +Am+3 -....=0.5Am+1 + 0.5Am+1 -0.5Am+2 +(0.5Am+3 -0.5Am+2 )+...
Учитывая, что амплитуды соседних зон Френеля примерно равны друг другу, однотипные выражение в скобках можно положить равными нулю, и тогда получим:
A=0.5Am+1
Отсюда следует, что в центре дифракционной картины, создаваемой диском, всегда наблюдается светлое пятно, независимо от размеров диска.
Generated by Foxit PDF Creator © Foxit Software
http://www.foxitsoftware.com For evaluation only.
Дифракция. 28.7
Дифракционная картина от диска, наблюдаемая на экране, имеет характер чередующихся тёмных и светлых колец, в центре которых находится светлое пятно. Структура дифракционной картины света от непрозрачного диска имеет общие черты с дифракционной картиной света от отверстия того же диаметра в непрозрачном экране.
Периодическая система одинаковых, расположенных на одном и том же расстоянии друг от друга щелей, называется дифракционной решёткой. Расстояние d между серединами соседних щелей называется периодом дифракционной решётки. Обычно в дифракционных решётках, используемых в оптике, щели являются узкими, т.е. их размер b во много раз меньше периода дифракционной решётки d<<b. Размер дифракционной решётки, состоящей из N узких щелей, называется её шириной L и вычисляется по формуле L=Nd.
Generated by Foxit PDF Creator © Foxit Software
http://www.foxitsoftware.com For evaluation only.
Дифракция. 28.8
При освещении дифракционной решётки плоской световой волной с длинной волны λ, нормально падающей на решётку, на достаточно большом расстоянии от решётки наблюдается дифракционная картина, которая может наблюдаться и на конечном расстоянии с помощью выпуклой линзы на плоском экране, помещённом в её фокусе.
Generated by Foxit PDF Creator © Foxit Software
http://www.foxitsoftware.com For evaluation only.
Дифракция. 28.9
Характер распределения интенсивности представляет собой чередование главных дифракционных максимумов, между которыми располагаются побочные дифракционные максимумы и минимумы. Главные дифракционные максимумы интенсивности располагаются в направлениях φm, в которых волны от щелей в точке наблюдения имеют разность хода, кратную λ, т.е.:
d sin m m
где - целые числа. Главный дифракционный максимум, соответствующий направлению, называется дифракционным максимумом m- го порядка. Центральный дифракционный максимум соответственно является дифракционным максимумом нулевого порядка (m=0) и имеет наибольшую величину.
