Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

лекции 1 курс. Богданов А.А

.pdf
Скачиваний:
51
Добавлен:
10.05.2014
Размер:
13.08 Mб
Скачать

Generated by Foxit PDF Creator © Foxit Software

http://www.foxitsoftware.com For evaluation only.

Дифракция. 27.10

Разобьем волновую поверхность на кольцевые зоны, аналогичные зонам Френеля, но гораздо меньше по ширине ( разность хода от краев зоны до точки Р составляет одинаковую для всех зон малую долю λ). Колебание, создаваемое в точке Р каждой из зон, изобразим в виде вектора, длина которого равна амплитуде колебания, а угол, образуемый вектором с направлением принятым за начало отсчета, дает начальную фазу колебания. В силу разбиения зон два любых соседних вектора будут повернуты друг относительно друга на один угол. Также амплитуда при переходе от зоны к зоне уменьшается. Следовательно, векторная диаграмма, получаемая при сложении колебаний возбуждаемых отдельными зонами, будет иметь вид спирали.

Generated by Foxit PDF Creator © Foxit Software http://www.foxitsoftware.com For evaluation only.

Лекция 28 Дифракция Френеля от простейших преград. Дифракция от круглого

отверстия. Дифракция Френеля от простейших преград. Дифракция от непрозрачного круглого диска. Дифракционная решетка.

Метод расчёта с помощью зон Френеля интенсивности света в точке наблюдения применим для анализа задач дифракции электромагнитных волн на простых по форме препятствиях .

Пусть экран с отверстием радиуса r0 расположен так, так что центр отверстия расположен на прямой, перпендикулярной плоскости экрана с отверстием, соединяющей точку наблюдения P и точку источника S. Разобьем поверхность волнового фронта, падающего на отверстие, на зоны Френеля по отношению к точке наблюдения P. Будем называть открытыми такие зоны Френеля, которые располагаются внутри отверстия. Соответственно зоны Френеля, попадающие на поверхность непрозрачного экрана, называются закрытыми.

1 1 r2 m= + 0
a b

Generated by Foxit PDF Creator © Foxit Software

http://www.foxitsoftware.com For evaluation only.

Дифракция. 28.2

Если размер отверстия во много раз меньше расстояний от экрана до источника a и от экрана до точки наблюдения b, то можно найти число m открытых отверстием зон Френеля:

Generated by Foxit PDF Creator © Foxit Software

http://www.foxitsoftware.com For evaluation only.

Дифракция. 28.3

Суммарная амплитуда в точке наблюдения есть

A = A1 A2 + A3 A4 + ... ±Am = 0.5(A1±Am)

Амплитуды волн зон Френеля при их небольшом числе можно считать примерно одинаковыми. По этой причине в точке Р будет либо максимум, либо минимум интенсивности дифрагированной волны от отверстия в зависимости соответственно от нечётности или чётности числа открытых зон Френеля.

Generated by Foxit PDF Creator © Foxit Software

http://www.foxitsoftware.com For evaluation only.

Дифракция. 28.4

Рассмотрим наблюдение интенсивности дифрагированного отверстием света на непрозрачном экране, помещённом в точку P, параллельно плоскости экрана с отверстием. В виду симметрии наблюдаемое на экране распределение интенсивности света будет иметь характер чередующихся тёмных и светлых колец с центром в точке P. Интенсивность света в максимумах по мере удаления от центральной точки будет убывать. Убывание объясняется тем, что при смещении точки наблюдения P из центра на периферию открытые из точки P центральные зоны Френеля частично закрываются и, кроме того, частично открываются новые зоны Френеля, ослабляющие интенсивность света в точке наблюдения.

m – четное

A A1 Am

2 2

m – нечетное

A A1 Am

2 2

Generated by Foxit PDF Creator © Foxit Software

http://www.foxitsoftware.com For evaluation only.

Дифракция. 28.5

Пусть свет из точки источника S освещает непрозрачный диск радиуса r0, за которым на прямой, перпендикулярной плоскости диска и проведенной через его центр, располагается точка наблюдения P. Как и выше, будем считать, что размер диска во много раз меньше расстояний от диска до источника a и от диска до точки наблюдения b.

Generated by Foxit PDF Creator © Foxit Software

http://www.foxitsoftware.com For evaluation only.

Дифракция. 28.6

Предположим, что диск из точки наблюдения P закрывает m зон Френеля. Тогда амплитуда света A в точке наблюдения будет равна алгебраической сумме амплитуд волн Am+1,Am+2 ,Am+3 ,.... открытых зон Френеля:

A=Am+1-Am+2 +Am+3 -....=0.5Am+1 + 0.5Am+1 -0.5Am+2 +(0.5Am+3 -0.5Am+2 )+...

Учитывая, что амплитуды соседних зон Френеля примерно равны друг другу, однотипные выражение в скобках можно положить равными нулю, и тогда получим:

A=0.5Am+1

Отсюда следует, что в центре дифракционной картины, создаваемой диском, всегда наблюдается светлое пятно, независимо от размеров диска.

Generated by Foxit PDF Creator © Foxit Software

http://www.foxitsoftware.com For evaluation only.

Дифракция. 28.7

Дифракционная картина от диска, наблюдаемая на экране, имеет характер чередующихся тёмных и светлых колец, в центре которых находится светлое пятно. Структура дифракционной картины света от непрозрачного диска имеет общие черты с дифракционной картиной света от отверстия того же диаметра в непрозрачном экране.

Периодическая система одинаковых, расположенных на одном и том же расстоянии друг от друга щелей, называется дифракционной решёткой. Расстояние d между серединами соседних щелей называется периодом дифракционной решётки. Обычно в дифракционных решётках, используемых в оптике, щели являются узкими, т.е. их размер b во много раз меньше периода дифракционной решётки d<<b. Размер дифракционной решётки, состоящей из N узких щелей, называется её шириной L и вычисляется по формуле L=Nd.

Generated by Foxit PDF Creator © Foxit Software

http://www.foxitsoftware.com For evaluation only.

Дифракция. 28.8

При освещении дифракционной решётки плоской световой волной с длинной волны λ, нормально падающей на решётку, на достаточно большом расстоянии от решётки наблюдается дифракционная картина, которая может наблюдаться и на конечном расстоянии с помощью выпуклой линзы на плоском экране, помещённом в её фокусе.

Generated by Foxit PDF Creator © Foxit Software

http://www.foxitsoftware.com For evaluation only.

Дифракция. 28.9

Характер распределения интенсивности представляет собой чередование главных дифракционных максимумов, между которыми располагаются побочные дифракционные максимумы и минимумы. Главные дифракционные максимумы интенсивности располагаются в направлениях φm, в которых волны от щелей в точке наблюдения имеют разность хода, кратную λ, т.е.:

d sin m m

где - целые числа. Главный дифракционный максимум, соответствующий направлению, называется дифракционным максимумом m- го порядка. Центральный дифракционный максимум соответственно является дифракционным максимумом нулевого порядка (m=0) и имеет наибольшую величину.