Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
matematika.doc
Скачиваний:
0
Добавлен:
01.03.2025
Размер:
637.44 Кб
Скачать

22. Логические устройства инвертор коньюнктор и дизьюнктор

24. Понятие высказывательной формы или предиката от одной переменной. Примеры предикатов.

Предикат – высказывание зависящее от какой-то меняющейся переменной величины.

Одноместный предикат – отображение, по которому каждому значению переменой указывается единственное значение 0 или 1 .примеры:

Конъюнкцией двух предикатов А(х) и В(х) называется новый предикат , который принимает значение «истина» при тех и только тех значениях х Т, при которых каждый из предикатов принимает значение «истина», и принимает значение «ложь» во всех остальных случаях. Множеством истинности Т предиката А(х) В(х), х Х является пересечение множеств истинности предикатов А(х) – Т1 и В(х) – Т2, т.е. Т= Т1 ∩Т2. Например: А(х): «х – четное число», В(х): « х кратно 3». А(х) В(х) – «х – четное число и х кратно 3». Т.е. предикат «х делится на 6».

Отрицанием предиката А(х) называется новый предикат , который принимает значение «истина» при всех значениях х Т, при которых предикат А(х) принимает значение «ложь», и принимает значение «ложь», если А(х) принимает значение «истина». Множеством истинности предиката , х Х является дополнение Т' к множеству Т в множестве Х.

Возьмём высказывания: ``Сократ - человек'', ``Платон - человек''. Оба эти высказывания выражают свойство ``быть человеком''. Таким образом, мы можем рассматривать предикат ``быть человеком'' и говорить, что он выполняется для Сократа и Платона.

25 Область определения и область истинности предиката

Множество М, на котором определен  предикат   P(х) , называется  областью   определения   предиката .

Множество всех элементов х  М , при которых  преди­кат  принимает значение «истина», называется множеством  истинности   предиката  Р(х), то есть множество  истиннос­ти   предиката  Р(х) - это множество 1р = {х| х  М, Р(х) = 1}.

Р(х): «х2 + 1> 0, x R»; область  определения   предиката   М = R и  область   истинности  –  тоже  R, т.к. неравенство верно для всех действительных чисел. Таким образом, для данного  предиката  М = Ip . Такие  предикаты  называются тождественно истинными.

В(х): «х2 + 1< 0, x R»; область  истинности   I =, т.к. не существует действительных чисел, для которых выполняется неравенство. Такие  предикаты  называются тождественно ложными.

26. Логические операции над предикатами. Связь операций над предикатами с их множествами истинности.

Конъюнкцией двух предикатов А(х) и В(х) называется новый предикат , который принимает значение «истина» при тех и только тех значениях х Т, при которых каждый из предикатов принимает значение «истина», и принимает значение «ложь» во всех остальных случаях. Множеством истинности Т предиката А(х) В(х), х Х является пересечение множеств истинности предикатов А(х) – Т1 и В(х) – Т2, т.е. Т= Т1 ∩Т2. Например: А(х): «х – четное число», В(х): « х кратно 3». А(х) В(х) – «х – четное число и х кратно 3». Т.е. предикат «х делится на 6».

Дизъюнкцией двух предикатов А(х) и В(х) называется новый предикат , который принимает значение «ложь» при тех и только тех значениях х Т, при которых каждый из предикатов принимает значение «ложь» и принимает значение «истина» во всех остальных случаях. Областью истинности предиката А(х) В(х) является объединение областей истинности предикатов А(х) В(х).

Отрицанием предиката А(х) называется новый предикат , который принимает значение «истина» при всех значениях х Т, при которых предикат А(х) принимает значение «ложь», и принимает значение «ложь», если А(х) принимает значение «истина». Множеством истинности предиката , х Х является дополнение Т' к множеству Т в множестве Х.

Импликацией предикатов А(х) и В(х) называется новый предикат А(х) В(х), который является ложным при тех и только тех значениях х Т, при которых А(х) принимает значение «истина», а В(х) – значение «ложь» и принимает значение «истина» во всех остальных случаях. Читают: «Если А(х), то В(х)». Например. А(х): «Натуральное число х делится на 3». В(х): «Натуральное число х делится на 4», можно составить предикат: «Если натуральное число х делится на 3, то оно делится и на 4». Множеством истинности предиката А(х) В(х) является объединение множества Т2 – истинности предиката В(х) и дополнения к множеству Т1 истинности предиката А(х).

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]