
- •Понятие множества. Операции над множествами. Универсальное множество.
- •Диаграммы Венна. Тождества алгебры множеств и их доказательство.
- •3 Определение прямого произведения множеств.
- •4 Определение бинарного отношения.
- •5 Основные свойства бинарных отношений
- •6 Бинарное отношение эквивалентности
- •7 Бинарное отношение частичного порядка.
- •8 Операции с бинарными отношениями
- •9 Изоморфизм бинарных отношений.
- •10 Определение отображения множеств и их основные виды : инъекция, сюръекция, биекция
- •11 Определение функции. Композиция функции.
- •12 Определение алгебраической операции и ее признаки.
- •13 Примеры унарных, бинарных алгебраических операций.
- •14 Определение полугрупп, групп и их примеры.
- •15 Понятие формального языка
- •16 Понятие высказывания. Операции над высказываниями и их применение в анализе текстов.
- •19 Тавтологии
- •20 Определение булевой функции. Описание булевых функций одной переменной.
- •21 Совершенная дизъюктивная нормальная форма
- •22. Логические устройства инвертор коньюнктор и дизьюнктор
- •24. Понятие высказывательной формы или предиката от одной переменной. Примеры предикатов.
- •25 Область определения и область истинности предиката
- •26. Логические операции над предикатами. Связь операций над предикатами с их множествами истинности.
- •27 Кванторы. Двухместные предикаты. Определения уравнения, тождества и неравенства.
- •28. Кванторные приставки о определение функции
- •29. Понятие графа. Степень вершины графа. Ориентированные и неориентированные графы. Полный и пустой графы.
- •30. Эйлеровы и гамильтоновы графы и их примеры в экономике.
- •31 Определение изоморфных графов
- •32. Определение маршрута, цепи, цикла.
- •33. Определение связного графа. Признаки связного графа.
- •34. Разрезы графа. Компоненты связности графа. Признак связности графа.
- •35. Определение матрицы смежности графа.
- •36. Определение матрицы инцеденции графа
- •37. Определение подграфа данного графа.
- •38. Определение объединения и пересечения графов.
- •39. Определение дополнения графов
- •40. Определение дерева и признак дерева.
- •41. Остов и коостов графов.
- •42. Паросочетания и их применение в организации работ. Двудольные графы.
- •43. Планарные графы и их приложения
- •44 Виды сетей в экономике и управлении. Представление сетей графами.
- •45. Виды задач экономики и управления, решаемые с помощью сетей. Сетевое планирование. Примеры сетевых графиков работ.
- •46. Критический путь в сетевом Графике. Резервы времени.
- •47. Алгоритм нахождения критического пути и резервов времени
30. Эйлеровы и гамильтоновы графы и их примеры в экономике.
Эйлеровым называется граф, в котором можно «обойти» все ребра, проходя по каждому только раз и вернуться в исходную вершину. (звезда в 5-угольнике)
Теорема.
Если граф
обладает
эйлеровым циклом, то он является связным,
а все его вершины — четными.
Доказательство Связность графа следует из определения эйлерова цикла. Эйлеров цикл содержит каждое ребро и притом только один раз, поэтому, сколько раз эйлеров путь приведет конец карандаша в вершину, столько и выведет, причем уже по другому ребру. Следовательно, степень каждой вершины графа должна состоять из двух одинаковых слагаемых: одно результат подсчета входов в вершину, другое — выходов.
Верно и обратное утверждение.
Гамильтоновым графом называется граф, в котором можно «обойти» все его вершины, проходя по каждой только 1 раз и вернуться в исходную вершину. (пятиугольник)
Транспортные» задачи, в которых вершинами графа являются пункты, а ребрами – дороги (автомобильные, железные и др.) и / или другие транспортные (например, авиационные) маршруты. Другой пример – сети снабжения (энергоснабжения, газоснабжения, снабжения товарами и т.д.), в которых вершинами являются пункты производства и потребления, а ребрами – возможные маршруты перемещения (линии электропередач, газопроводы, дороги и т.д.).Управление проектамиС точки зрения теории графов проект – совокупность операций и зависимостей между ними Модели коллективов и групп, используемые в социологии, основываются на представлении людей или их групп в виде вершин, а отношений между ними (например, отношений знакомства, доверия, симпатии и т.д.) – в виде ребер или дуг.Модели организационных структур, в которых вершинами являются элементы организационной системы, а ребрами или дугами – связи (информационные, управляющие, технологические и др.) между ними
31 Определение изоморфных графов
Графы
и
изоморфны,
если существует такое взаимно однозначное
соответствие между множествами их
вершин
и
,
что вершины соединены ребрами в одном
из графов в том и только том случае,
когда соответствующие им вершины
соединены в другом графе. Если ребра
ориентированы, то и их направления также
должны соответствовать друг другу.
изоморфизмом
графов
и
называется
биекция
между множествами вершин графов
такая,
что любые две вершины
и
графа
смежны,
тогда и только тогда, когда вершины
и
смежны
в графе
.
отношение изоморфизма графов рефлексивно, симметрично и транзитивно и является отношением эквивалентности. Следовательно, множество всех графов разбивается на классы эквивалентности так, что графы из одного класса попарно изоморфны, а графы из разных классов не изоморфны. Изоморфные графы, как правило, отождествляют, и их можно изображать одним рисунком.
Из определения следует, что изоморфные графы могут различаться лишь обозначениями вершин и ребер, так как у них должно быть равное число вершин и ребер, соответствующие друг другу вершины обязаны иметь одинаковые степени и полустепени, и, разумеется, совершенно все равно, какую геометрическую реализацию графа выбирать для его изображения.
Говорят, что граф
изоморфно
вкладывается
в граф
,
если
изоморфен
некоторой части графа
.